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Abstract 
 

Affine term structure models in which the short rate follows a jump-diffusion process are 
difficult to solve, and the parameters of such models are hard to estimate.  Without analytical 
answers to the partial difference differential equation (PDDE) for bond prices implied by jump-
diffusion processes, one must find a numerical solution to the PDDE or exactly solve an 
approximate PDDE.  Although the literature focuses on a single linearization technique to 
estimate the PDDE, this paper outlines alternative methods that seem to improve accuracy.  Also, 
closed-form solutions, numerical estimates, and closed-form approximations of the PDDE each 
ultimately depend on the presumed distribution of jump sizes, and this paper explores a broader 
set of possible densities that may be more consistent with intuition, including a bi-modal 
Gaussian mixture.  GMM and MLE of one- and two-factor jump-diffusion models produce some 
evidence for jumps, but sensitivity analyses suggest sizeable confidence intervals around the 
parameters.  

                                                 
* With no implication whatsoever, the author thanks Sanjiv Das, Henrik Rasmussen, and seminar participants at the 
Federal Reserve Board for helpful comments and suggestions on this project. The views presented are solely those 
of the author and do not necessarily represent those of the Federal Reserve Board or its staff. 



1.  Introduction 

Shortcomings in the Black-Scholes-Merton model of option prices are well documented.  

One possible relaxation of the model’s restrictions, first proposed by Merton (1976), is to 

incorporate the possibility that, in addition to diffusion, the underlying asset jumps 

discontinuously.1  Such models that incorporate Brownian increments as well as potential non-

local instantaneous price changes have been applied in the academic literature (and presumably 

in practice also) to derivatives written on equities (Merton, 1976; Ball and Torous, 1983) and 

foreign exchange (Bates, 1996) as well as fixed-income instruments and the underlying yield 

curve (Ahn and Thompson, 1988; Baz and Das, 1996; Das, 2002; Johannes, 2004; Piazzesi, 

2005).  However, determining whether a particular asset price movement is a jump or a 

manifestation of a diffusion process is difficult.  Indeed, whether a pure Gaussian or a jump-

diffusion process better captures interest rate movements is an open empirical question.2  But this 

issue aside, this paper focuses on the implications of expanding standard affine term structure 

models (ATSMs) to include jumps with respect to the derivation of solutions to the bond pricing 

equation and the estimation of parameters.   

Regarding the issue of solutions to ATSMs, jump-diffusion processes for the short rate 

imply a (second-order parabolic) partial difference differential equation (PDDE) for bond prices 

that does not necessarily have a closed-form solution.  In the absence of an analytical answer, 

one must find numerical solutions to the PDDE or solve an approximate PDDE exactly.  This 

paper addresses the literature on the second of these approaches (Ahn and Thompson, 1988; and 

Baz and Das, 1996) in two general respects.  First, although existing studies focus on a single 

linearization technique to estimate the PDDE, the following proposes alternative methods that 

under reasonable parameterizations seem to improve accuracy.  Second, closed-form solutions, 

numerical estimates, and closed-form approximations of the PDDE each ultimately depend on 

the key assumption regarding the distributional characteristics of jump sizes, and the current 

literature on linearization techniques exclusively examines the case in which jumps are normally 

distributed.  This paper explores a broader set of densities, including the exponential/Bernoulli 

                                                 
1 Press (1967) was perhaps the first to explore the hypothesis that (log) stock price changes follow a Poisson mixture 
of normal distributions.  
2 Das (2002) and Johannes (2004) present empirical cases for interest rate models that incorporate jumps, and more 
generally, Aït-Sahalia (2004) finds that it is possible to disentangle Brownian noise from jumps.  
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distribution from Das and Foresi (1996), which permits useful comparisons with an analytical 

solution, as well as a bi-modal Gaussian mixture developed in this paper.3           

Regarding parameter estimation, this paper considers a wider variety of distributional 

assumptions for jump size and employs simple variants of the general method of moments 

(GMM) and maximum likelihood estimation (MLE).  Also, the MLE uses both direct proxies for 

the short rate, as with GMM, and indirect proxies consisting of observable zero-coupon bond 

yields.  Using the closed-form solutions to approximate PDDEs for bond prices, one can express 

the latent factor(s) in terms of observable variables(s), broadly consistent with Pearson and Sun 

(1994).  In general, the data do seem to provide some evidence that the short-rate follows a 

jump-diffusion process, but with respect to application of the broader model to pricing bonds, the 

Gaussian and jump parameters seem sensitive to estimation technique as well as the proxy used 

for the short rate (where applicable).     

Section 2 reviews the derivation of the PDDE implied by ATSMs that include a jump-

diffusion process for the short rate.  Section 3 summarizes the existing literature on current 

linearization techniques to approximate the PDDE, outlines alternative approximations, and 

describes simple parameterizations of the model under the common assumption that jump 

follows a (uni-modal) Gaussian distribution.  Section 4 examines alternative assumptions 

regarding the distribution of jump size and also summarizes relevant (arbitrary) 

parameterizations.  Section 5 describes the parameter estimates following GMM and MLE, and 

Section 6 outlines the derivation and the parameter estimation of a two-factor jump-diffusion 

ATSM in which the second state variable is the (time-varying) central tendency of the short rate.  

Section 7 concludes. 

 

2.  The Bond Pricing Equation under Jump-Diffusion  

Of course, relaxation of the assumption that (underlying) financial assets follow pure 

diffusion processes considerably complicates the derivation of option and bond price formulae, 

but one can nonetheless incorporate jumps and obtain tractable approximations for pricing.  For 

example, Merton (1976) derives a semi-closed-form solution for the price of a call option on a 

                                                 
3 The section on GMM estimation also considers the possibility that jumps follow a Bernoulli mixture of uniform 
distributions. 
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stock that involves an infinite series of weighted Black-Scholes solutions4 in which the weights 

are effectively the probabilities associated with the realization of the number of jumps drawn 

from a Poisson distribution.  Turning to bonds, this paper focuses on the case of a jump-

augmented Vasicek (1977) model.5  To derive the bond-pricing equation, assume that the 

instantaneous (unobservable) short rate, r, follows  

(1) 

( ) ( )dr a b r dt dW Jd hσ π= − + +  

where a is the mean reversion coefficient, b is the “target” interest rate or central tendency of the 

short rate, t is time, σ is the instantaneous volatility coefficient, dW is the Weiner increment, J is 

the jump size, dπ is the increment in a Poisson process with intensity rate h, and T tτ = − (time 

to maturity).  Under the assumption of a single factor, bond prices, ( ),P r τ , are a function of the 

short rate and time to maturity, and their dynamics, assuming that all time dependence comes 

through the state variable, r, and using Ito’s lemma for jump-diffusion processes, follow 

(2) 

( ) ( ) ( )
2

2
2

1 , ,
2

P P PdP a b r dt dW P r J t P r t d
r r r

σ σ π
⎛ ⎞∂ ∂ ∂

= − + + + + −⎡ ⎤⎜ ⎟ ⎣ ⎦∂ ∂ ∂⎝ ⎠
. 

Following the standard capital asset pricing relation (Cochrane, 2001; Das and Foresi, 1996), the 

holding period return of the bond should be equal to the risk-free rate plus a term premium, 

which with trivial rearranging follows 

(3) 

1
t t

dP P d dPE r dt E
P P Pτ

∂ Λ⎡ ⎤ ⎛ ⎞ ⎡ ⎤− + = −⎜ ⎟⎢ ⎥ ⎢ ⎥∂ Λ⎣ ⎦ ⎝ ⎠ ⎣ ⎦
, 

and the dynamics of the pricing kernel, Λ , follow 

(4) 

                                                 
4 That is, Merton solves the jump-augmented Black-Scholes equation exactly, albeit conditional on the number of 
jumps.  In this formulation, the spot price in the pure Gaussian case, 0S , corresponds to ( ) ( )

0
r NS e Jμ τ τ− , where μ is 

the drift of the stock, J is expressed as a multiple of the stock price, and N is the number of jumps until expiry.  
Central to this derivation is the fact that one can derive a convenient expression for the terminal distribution of S 
from the jump-augmented process, 

( ) ( )1dS dt dW J d h
S

μ σ π= + + − . 

5 Ahn and Thompson (1988) examine an alternative case of a jump-augmented Cox, Ingersoll, and Ross (1985) 
(CIR) model. 
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d rdt dWλΛ
= − −

Λ
.6 

Note that the market price of interest rate diffusion risk is constant and equal toλ and that this 

expression reflects Merton’s (1976) assumption that the market price of jump risk is 

unsystematic and thus diversifiable.7  Plugging the dynamics of bond prices (2) and the pricing 

kernel (4) into the equation for holding period return (3), we arrive at the fundamental PDDE for 

bond prices,  

(5) 

( ) ( ) ( )
2

2
2

10 , ,
2 t

P P Pa b r rP hE P r J t P r t
r t r

λσ σ∂ ∂ ∂
= − − + + − + + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂ ∂ ∂

,8 

with the boundary condition that ( ), 0 1P r τ = = .  Given the proposed affine 

solution, ( ) ( ) ( ), expP r A B rτ τ τ= −⎡ ⎤⎣ ⎦ , the expectation term simplifies, and the PDDE becomes  

(6) 

( ) ( ) ( )
2

2
2

10 , exp 1
2 t

P P Pa b r rP hP r E B J
r r

λσ σ τ τ
τ

∂ ∂ ∂ ⎡ ⎤= − − − + − + − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦∂ ∂ ∂
, 

which can be expressed using the derivatives of the affine solution as two linked ODEs,  

1B aB
τ

∂
+ =

∂
 

and 

( ) ( )2 21 exp 1
2 t

A

ab B B hE B J
A
τ λσ σ τ

∂
∂ ⎡ ⎤= − + + − −⎡ ⎤⎣ ⎦⎣ ⎦ . 

Assumptions regarding the distribution of jump sizes become critical at this juncture.  

Given the linearity of the expectations operator, the final term in the bond pricing equation (as 

well as of course for the ODE for A) can be written as ( ) ( ){ }( ), exp 1thP r E B Jτ τ− −⎡ ⎤⎣ ⎦ , and the 

                                                 
6 This is certainly not the only way to derive the jump-augmented bond pricing equation.  One could also extend the 
arbitrage argument in Vasicek (1977), for example. 
7 Merton (1976, p. 133) raises the argument that, in the case of stocks, information that precipitates jumps is likely 
firm or industry specific, such as “the discovery of an important new oil well or the loss of a court suit,” and is 
therefore unlikely to move “market” prices.  This argument, broadly consistent with the Capital Asset Pricing Model 
(CAPM), is more compelling perhaps for asset prices of individual firms as opposed to aggregate market indices or 
government bonds. 
8 Given that the equation includes an expectation, previous studies also refer to the PDDE as a partial integro-
differential equation (PIDE).  
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expectation, ( ){ }exptE B Jτ−⎡ ⎤⎣ ⎦ , is effectively the moment generating function (m.g.f.) of the 

(presumed) distribution of jump sizes.  For example, one common assumption (Baz and Das, 

1996; Ahn and Thompson, 1988) is that J is normally distributed with mean α and standard 

deviation γ, and the PDDE that incorporates this assumption given the m.g.f. of a Gaussian 

distribution follows   

(7) 

( ) ( ) ( ) ( )
2

2 2 2
2

1 10 , exp 1
2 2

P P Pa b r rP hP r B B
r r

λσ σ τ α τ γ τ
τ

∂ ∂ ∂ ⎛ ⎞⎡ ⎤= − − − + − + − + −⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎢ ⎥∂ ∂ ∂ ⎣ ⎦⎝ ⎠
, 

with 

1B aB
τ

∂
+ =

∂
 

and 

( ) ( ) ( )2 2 2 21 1exp 1
2 2

A

ab B B h B B
A
τ λσ σ α τ γ τ

∂
⎛ ⎞⎡ ⎤∂ = − + + − + −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

. 

The first ODE in (7) has an explicit solution, but numerical methods are necessary to solve the 

second.  Notably, different distributional assumptions for jump sizes and therefore different 

m.g.f.s determine the precise form of the PDDE, the closed-form solution (if any), numerical 

estimate, and closed-form approximations described below. 

 A couple comments are noteworthy before examining linearization approximations to the 

bond pricing equation for jumps.  First, one can easily relax the assumption that jump risk can be 

diversified away without considerably complicating the problem.  Following Das and Foresi 

(1996), the pricing kernel with systematic jump risk follows  

(8) 

J J
d rdt dW hdt dλ λ λ πΛ

= − − + −
Λ

 

where the market price of (systematic) jump risk is also constant and denoted by Jλ .  They show 

that the implied PDDE is 

(9) 
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( ) ( ) ( ) ( )
2

2
2

10 1 , exp 1
2 J t

P P Pa b r rP h P r E B J
r r

λσ σ λ τ τ
τ

∂ ∂ ∂ ⎡ ⎤= − − − + − + − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦∂ ∂ ∂
.9 

Therefore, one can readily account for systematic jump risk in the approximations outlined 

below by substituting ( )1 Jh λ− for h.10  Relaxation of the problematic assumption that jump risk 

is diversifiable becomes more costly in the context of estimating parameters. 

 Second, although the existence of closed-form solutions depends critically on the 

distributional assumption for J, one can easily solve for the Fourier transform of the bond price 

using the transform of the PDDE, (5).11  In short, given that differentiation and convolution both 

become multiplication in transform space, the PDDE simplifies to the ODE, 

(10)  

( )
ˆ ˆ 0P K Pξ
τ

∂
+ =

∂
 

with the solution 

( ) ( )ˆ , KP r e ξ ττ −= , 

where 

( ) ( ) ( )( )2 21 ˆ 1
2

K a b r i r h fξ λσ ξ σ ξ ξ= − − + − − −⎡ ⎤⎣ ⎦ , 

( )f̂ ξ is the characteristic function of the distribution for jumps, and ( )ˆ ,P r τ  denotes the Fourier 

transform of the bond price.12  Notably, the derivation of this solution in transform space does 

not depend on the presumed affine form for bond prices. 

 

3. The Linearization Approximation and an Alternative: Normally Distributed Jumps 

 The discussion now turns to closed-form approximations of the (single-factor) bond 

pricing equation with jumps.  After a review of existing linearization techniques examined in the 

                                                 
9 Actually, this equation re-arranges the terms slightly compared to equation (10) in Das and Foresi (1996, p. 12). 
10 Sensitivity analyses along these lines similar to Tables 1-6 produces somewhat trivial differences in (approximate) 
bond prices and yields.  Results are available on request. 
11 To use perhaps looser terminology, one can solve for the characteristic function of the bond price rather than the 
bond price itself. 
12 The bond price itself can be obtained by taking the inverse Fourier transform, as in 

( ) ( )1,
2

KirP r e e ξ τξτ
π

∞
−−

−∞

= ∫ . 

But, the existence of closed-form expressions again depends on the distributional assumptions for J. 
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literature, this section examines alternative approximations to the PDDE under the assumption 

that J is normally distributed. 

 

3.1 Literature Review 

Ahn and Thompson (1988) and Baz and Das (1996) employ a linearization technique to 

produce an exact solution for bond prices with respect to an approximate PDDE.  They use a 

two-term Taylor-series approximation of the exponential function within the expectation of 

equation (6), ( )exp B Jτ−⎡ ⎤⎣ ⎦ , to arrive at  

(11) 

( )
2 2 2

2
2

10 1 1
2 2t

P P P J Ba b r rP hPE JB
r r

λσ σ
τ

⎡ ⎤⎛ ⎞∂ ∂ ∂
= − − − + − + − + −⎡ ⎤ ⎢ ⎥⎜ ⎟⎣ ⎦ ∂ ∂ ∂ ⎝ ⎠⎣ ⎦

. 

This standard approximation notably does not require any explicit assumption about the 

distribution of jump sizes.  Rather, one only needs the first and second moments of the 

distribution.13  Taking expectations and noting the mean and variance of J by α and 2γ , 

respectively, the approximate PDDE is then  

(12) 

( ) ( )
2

2 2 2 2
2

1 10
2 2

P P Pa b r rP hP B B
r r

λσ σ α μ γ
τ

∂ ∂ ∂ ⎡ ⎤= − − − + − + − + +⎡ ⎤⎣ ⎦ ⎢ ⎥∂ ∂ ∂ ⎣ ⎦
. 

Given the proposed affine solution and the relevant derivatives, this equation reduces to a system 

of two ODEs, 1BBa
τ

∂
+ =

∂
 and ( ) ( )2 2 2 21

2

A

ab h B h B
A
τ λσ α σ α γ

∂
∂ ⎡ ⎤= − − + + +⎣ ⎦ , and the 

approximate closed-form solution for bond prices given the initial data that ( )0 1A =  

and ( )0 0B =  follows 

(13) 

( ) ( ) ( )21 2 1 2 2
2 3 3

1 2, exp 1 1
2

a
a ae M a M M a M MP r r e e

a a a a

τ
τ ττ τ

−
− −⎧ ⎫− + +

= − + + − − −⎨ ⎬
⎩ ⎭

, 

where 

                                                 
13 Of course, the variance has little context without some sense of the nature of the distribution, but previous 
literature (Ahn and Thompson, 1988; Baz and Das, 1996) commonly assumes that J is Gaussian. 
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1M ab hλσ α= − + −  and ( )2 2 2
2

1
2

M hσ α γ⎡ ⎤= + +⎣ ⎦ .  Note that in order for the condition 

( )lim , 0P r
τ

τ
→∞

= to be met, we must have 1 2 0M a M+ < . 

Baz and Das (1996) show that the above expression provides a very close approximation 

to bond prices vis-à-vis a numerical solution to the pricing equation.  Again, this standard 

approximation does not technically require full knowledge of the distribution of J, but notably, in 

the case of a Gaussian distribution, the expectation of the two-term Taylor-series approximation 

of ( )exp B Jτ−⎡ ⎤⎣ ⎦  in equation (6) is not equivalent to the one-term Taylor-series approximation 

of the m.g.f. of a normal distribution in equation (7).  That is, such an approximation would 

imply the (approximate) PDDE 

(14)    

( )
2

2 2 2
2

1 10
2 2

P P Pa b r rP hP B B
r r

λσ σ α γ
τ

∂ ∂ ∂ ⎡ ⎤= − − − + − + − +⎡ ⎤⎣ ⎦ ⎢ ⎥∂ ∂ ∂ ⎣ ⎦
. 

However, of course (12) and (14) are equivalent if 0α = , a common assumption in the literature. 

 

3.2.  An Alternative Closed-Form Approximation under the Gaussian Assumption 

Although the approximations in Baz and Das (1996) are very close to the numerical 

estimates, they suggest that “(t)he degree of accuracy of this approach is still an open question 

(p. 78).”  To address this question further, the discussion now turns to an alternative that more 

explicitly incorporates the specific distributional assumptions for J and employs two-term 

Taylor-series approximations after the expectation (the integral) in the bond pricing equation has 

been taken.14  Put differently, the alternative approximates the m.g.f. of the distribution for J.  

For example, given the Gaussian assumption and its m.g.f., ( ) 2 21exp
2Jm B Bθ α γ⎡ ⎤= − +⎢ ⎥⎣ ⎦

, the 

(approximate) PDDE follows  

(15) 

( ) ( )2 2 22 2 3 4 4
2

2

10
2 2 2 8

BP P P B Ba b r rP hP B
r r

μ γ μγ γλσ σ μ
τ

⎛ ⎞+∂ ∂ ∂
= − − − + − + − + − +⎜ ⎟⎡ ⎤⎣ ⎦ ⎜ ⎟∂ ∂ ∂ ⎝ ⎠

, 

                                                 
14 Of course, one need not limit the approximations to two terms in practice.  
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and by again making use of the initial data and the presumed affine form of the solution, the 

closed-form approximation for bond prices using this alternative follows   

(16) 

( ) ( )

( ) ( ) ( )

3 2 3 2
1 2 3 4 1 2 3 4

4 5

2
2 3 42 3 4 3 4 4

5 5 5

1 2 3 4, exp 1

3 6 41 1 1
2 3 4

a
a

a a a

e M a M a M a M M a M a M a MP r r e
a a a

M a M a M M a M Me e e
a a a

τ
τ

τ τ τ

τ τ
−

−

− − −

⎧ − + + + + + +
= − + + −⎨

⎩
⎫+ + +

− − + − − − ⎬
⎭

where 

1M ab hλσ α= − + − , ( )2 2 2
2

1
2

M hσ α γ⎡ ⎤= + +⎣ ⎦ , 2
3

1
2

M hαγ= − ,and 4
4

1
8

M hγ= .  In order for 

the condition that bond prices approach zero as the time to maturity goes to infinity, i.e. 

( )lim , 0P r
τ

τ
→∞

= , the parameters must satisfy 3 2
1 2 3 4 0M a M a M a M+ + + < . 

 Interestingly, if 0α = , one can arrive at the same approximation in (16) using a 

somewhat different approach by taking a four-term Taylor expansion of the exponential in (6) 

instead of the two-term expansion in Baz and Das (1996), as in 

(17) 

( )
2 2 2 3 3 4 4

2
2

10 1 1
2 2 3! 4!t

P P P J B J B J Ba b r rP hPE JB
r r

λσ σ
τ

⎡ ⎤⎛ ⎞∂ ∂ ∂
= − − − + − + − + − + −⎡ ⎤ ⎢ ⎥⎜ ⎟⎣ ⎦ ∂ ∂ ∂ ⎝ ⎠⎣ ⎦

. 

Of course, in this approximation, one needs the first four moments of the distribution, but the 

m.g.f. is not explicitly introduced.15  Similar to the distinction between (13) and (14), the closed-

form approximation to (17) is not equivalent to (16) if 0α ≠ . 

 

3.3.  Some Parameterizations using Linearization Techniques 

To address the relative accuracy of this alternative approximation, Table 1 shows bond 

prices and yields for integer maturity points between 0 and 30 years given a set of parameter 

values previously used in the literature.16  Prices and yields based on the numerical estimation, 

the closed-form approximations following Ahn and Thompson (1988) and Baz and Das (1996), 

and the proposed alternative closed-form approximations are listed in Columns 2 and 3, Columns 
                                                 
15 Then again, one is likely to use the m.g.f., if available, to derive higher moments. 
16 The parameter values follow those in Exhibit 5 from Baz and Das (1996, p. 83).  The numerical approximations 
use the NDSolve command in Mathematica, which follow a modified Runge-Kutta procedure. 
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4 and 5, and Columns 7 and 8, respectively.  Column 6 reports the absolute value of the 

difference in basis points between the yields implied by the standard linearization approximation 

vis-à-vis those implied by the numerical solution.  The deviations for this set of parameters 

average about 0.182 basis points for each integer maturity point between one and 30 years, and 

the accuracy seems to wane as maturity lengthens.  Column 9 reports the same results for the 

alternative closed-form approximation, (16), and indicates that the average absolute deviation is 

about 0.000018 basis points, notably lower than the standard technique, but the accuracy again 

appears to increase somewhat out the term structure.  With respect to comparing the two closed-

form approximations, as Column 10 indicates, on average the alternative approximation is about 

2737 times as accurate as the standard linearization technique across each maturity point.  Also, 

Column 10 indicates that the improvement is largely uniform, although the standard 

approximation is curiously more accurate with one year to maturity.  But in general, this 

particular analysis suggests that the alternative closed-form approximation is quite close to the 

numerical approximation.     

Of course, Table 1 does not provide definitive evidence regarding the accuracy of either 

closed-form approximation, because the choice of parameters is ultimately arbitrary.  Again, the 

parameters in Table 1 are consistent with common assumptions made in previous literature to 

facilitate comparisons.17  Consideration of the relevant universe of alternatives in this context is 

not feasible, but perhaps those parameters related to the variance of the short rate process are of 

particular interest, specifically the relative contribution to total variance from the diffusion 

parameter, σ, on the one hand, and the contribution of the jump parameter(s) – α, γ , and h if J is 

normally distributed – on the other.  In short, given that the approximations only involve those 

terms in the PDDE related to jumps, one might expect the closed-form solution to the estimated 

PDDE to be more accurate the smaller the contribution of jumps to total variance of the short 

rate process.  To measure the relative contributions, note that if jumps are normally distributed, 

the unconditional variance of the jump-diffusion short rate process in (1) follows 

(18) 

                                                 
17 To address the sensitivity of parameter selection in the standard linearization technique, Baz and Das (1996) 
sequentially vary each of the parameters.   
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( )2 2 2

2
h

a
σ α γ+ +

.18 

Therefore, the ratio ( )2 2 2hσ α γ+ provides a non-dimensional measure of the relative 

contributions, and the value of (18) given the chosen parameters in Table 1 indicates that the 

contribution of diffusion is 6.4 times that of the jumps.19  Although the jump component in this 

case is not negligible, perhaps an alternative parameterization that increases its relative 

contribution would be instructive.   

To that end, Table 2 shows the results from a parameterization in which the jump 

contribution is twice that of the diffusion,20 with σ = .02 , h = 16, and the remaining parameter 

values set to those in Table 1.21  The results are similar to Table 1, as the alternative closed-form 

approximation is more accurate than the standard linearization technique, as indicated in Column 

10.  Also, the differences between the approximations and the numerical solutions, as shown in 

Columns 6 and 9, are somewhat larger than the corresponding differences in Table 1.   Even so, 

the magnitudes of the differences still suggest a high degree of accuracy – the alternative closed-

form approximation is never even as much as a thousandth of a basis point from the numerical 

estimate across the term structure.  Therefore, at least given this set of parameters, the closed-

form approximations seem quite close to the numerical solutions, even when jumps contribute 

more than diffusion to the variance in the short rate. 

 

4.  Alternative Distributional Assumptions for Jump Sizes 

The discussion now turns to two alternative assumptions for the distribution of jump 

sizes.  The first follows Das and Foresi (1996), who assume that the absolute value of jump size 

follows an exponential distribution,22 with the mean absolute jump size denoted by 1α − , and the 

jump sign follows a Bernoulli distribution, with the probability of a positive jump denoted by w.  

                                                 

18 More generally, the unconditional variance of the short rate process is 
2 2

2
thE J

a
σ ⎡ ⎤+ ⎣ ⎦ .  See the discussion of 

GMM in Section 5 for a derivation. 
19 The diffusive and jump contributions are of course equal when hσ γ= . 
20 Johannes (2004) finds that jumps account for more than half (almost two-thirds) of the condition variance of 
interest rate changes at low (high) levels. 
21 The condition 3 2

1 2 3 4 0M a M a M a M+ + + < still holds for this parameterization. 
22 Johannes (2004, pp. 242-243) assumes that jumps follow a log-normal distribution. 
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Notably, as Das and Foresi (1996) show, this assumption produces a closed-form solution for 

bond prices.  Therefore, in contrast to Baz and Das (1996), one can adopt this distributional 

assumption and directly assess the relative accuracy of the numerical and closed-form 

approximations with respect to an analytical solution.  In other words, one can test whether 

numerical solutions to the exact PDDE are more accurate than closed-form solutions to an 

approximation PDDE.  

The second distribution assumption, which the existing literature on jump-diffusion 

processes and ATSMs does not consider, directly addresses the prospect that, in most notable 

contract to the Gaussian case, jump sizes are bi-modally distributed with modes sufficiently 

distant from the origin.  A Bernoulli mixture of two normal distributions fits this description, and 

although this distributional assumption for J does not produce a closed-form solution, this 

section compares the accuracy of two alternative closed-form approximations vis-à-vis the 

numerical solution, similar to the analysis in the previous section.   

 

4.1.  The Exponential Distributional Assumption for J 

Rather than theoretical notions about the true distribution of jump sizes, consideration of 

the alternative distribution from Das and Foresi (1996) is driven more by the fact that it produces 

an analytical solution for bond prices which, in turn, allows us to compare the accuracy of 

numerical solutions with closed-form solutions to the approximate PDDE.  Given the m.g.f. of an 

exponential distribution and the probability of a positive jump,23 w, we can derive the moments 

necessary to calculate both the standard linearization technique as well as a version of the 

alternative closed-form alternative in the previous section.  Given this information, the bond 

pricing equation using the latter approximation is 

 (19) 

                                                 
23 The m.g.f., ( )Jm θ ,of an exponential distribution follows ( )Jm αθ

α θ
=

−
, and the nth moment of the 

distribution follows 
( )

( )
0

!n

n
t

nm t
t α

=

∂
=

∂
.  Therefore, following the distribution in Das and Foresi (1996), the 

expected value of jumps follows ( )1 11w w
α α

⎛ ⎞+ − −⎜ ⎟
⎝ ⎠

. 
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( ) ( ) ( ) 32 2 4
2

2 2 3 4

2 1 2 110
2

w B w BP P P B Ba b r rP hP
r r

λσ σ
τ α α α α

⎛ ⎞− −∂ ∂ ∂
= − − − + − + − + − +⎡ ⎤ ⎜ ⎟⎣ ⎦ ∂ ∂ ∂ ⎝ ⎠

,24 

and the solution follows (16) (with the same restrictions) but with ( )
1

2 1w
M ab hλσ

α
−

= − + − , 

2

2 22
hM σ

α
= + , ( )

3 3

2 1w
M h

α
−

= − , and 4 4

hM
α

= .  Again, the standard linearization only 

considers the first two moments of the distribution, and the solution also follows (16) but with 

( )
1

2 1w
M ab hλσ

α
−

= − + − , 
2

2 22
hM σ

α
= + , 3 0M = , and 4 0M = .   

Table 3 examines the accuracy of the numerical solution and the two alternative closed-

form approximations.  Columns 2 and 3 list the closed-form solution from Das and Foresi (1996, 

pp. 12-13) in terms of bond prices and yields, respectively, given an arbitrary but reasonable set 

of parameters that match the assumptions in Table 1 and the parameterization in Das and Foresi 

(1996, p. 15) as closely as possible for all integer maturity points between 0 and 30 years.  

Columns 4 and 5, Columns 7 and 8, and Columns 10 and 11 list prices and yields from the 

corresponding numerical solution, standard linearization technique, and the alternative closed-

form approximation, respectively.  Column 6 indicates the absolute difference in yields between 

the closed-form solution and the numerical estimates expressed in basis points.  On average from 

one to 30 years to maturity, the numerical approximation is within about .000069 basis points of 

the actual solution.  Column 9 lists the corresponding differences using the standard linearization 

technique, which on average is about .091 basis points across the maturity spectrum.  Also, 

Column 12 lists the absolute difference in yields between the alternative closed-form 

approximation and the actual solution, which averages about .00014 basis points from one to 30 

years to maturity.  Therefore, in general, the absolute accuracy of both closed-form 

approximations seems favorable using an alternative distributional assumption for J.  Moreover, 

with respect to the relative accuracy of the methods, Column 13 shows that on average the 

alternative closed-form approximation is actually more precise than the numerical solution.  This 

result is notably driven by greater accuracy from one to 10 years to maturity, after which the 

numerical approximation is superior, but this result generally questions the use of numerical 

solutions as a benchmark for precision.  Also, as indicted in Column 14 and consistent with 

                                                 
24 This approximation broadly follows (17). 
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Tables 1 and 2, the alternative is clearly more accurate than the standard linearization technique 

on average and for each maturity point.     

 With respect to an alternative parameter set, consider again the relative contribution of 

the diffusion and jump volatility parameters to the total variance of the short rate.  In the case of 

the exponential distribution, the unconditional variance follows  

(20) 

2
2

2

2

h

a

σ
α

⎛ ⎞+ ⎜ ⎟
⎝ ⎠ , 

and given the set of parameters in Table 3, the diffusion contribution is 12.8 times that of the 

jumps.  Similar to the Gaussian assumption discussed previously, the case in which the jump 

contribution is twice that of the diffusion component – which again obtains with σ = .02 , h = 

16, and holding γ constant – is perhaps instructive.  As Columns 9 and 12 in Table 4 suggest, the 

closed-form approximations are somewhat less accurate compared to the corresponding 

estimates in Table 3.  Nonetheless, the alternative approximation is never even as much as 

seventy thousandths of a basis point from the closed-form solution, and as Column 13 shows, the 

estimates are on average closer than the numerical solution, albeit not for those at five and after 

10 years to maturity.    

Therefore, even when jumps contribute twice as much as diffusion to variance in the 

short rate, the alternative closed-form approximation produces very accurate estimates under 

certain reasonable cases, and its comparative precision suggests that use of the numerical 

solution as an absolute benchmark is potentially questionable.  That is, one cannot in principle be 

sure whether approximate solutions to the exact PDDE produce more precise estimates than 

exact solutions to an approximate PDDE.25    

 

4.2.  The Bi-modal Gaussian Mixture Distributional Assumption for J 

So far, the discussion of alternative distributional assumptions for jump sizes has not 

appealed to much intuition about the true form of the density.  In fact, the common assumption in 

the literature explored in Tables 1 and 2 that J has an expected value of zero and follows a 

normal distribution seems somewhat problematic.  Simply put, if J is both centered around the 
                                                 
25 More generally, higher-order Taylor expansions would result in approximate PDDEs that would of course be 
more accurate than the two-term approximations used in the alternative linearization technique. 
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origin and Gaussian, the most common jump (i.e. the mode) would not seem to be a jump (i.e. a 

non-local change) in any meaningful sense of the word.  Rather, the assumption that the average 

jump size is zero only seems tenable if jump size is bi-modally distributed, as (large) positive 

and negative values cancel when taking the average (or forming expectations).     

The assumption in Das and Foresi (1996) that the absolute value of jump size follows an 

exponential distribution and that jump sign follows a Bernoulli distribution is a considerable 

improvement in this regard, with the component means at 1α −− and 1α −  under the assumption 

that 0.5w = .  However, another desirable feature of any possible distribution for jump sizes 

would seem to be that the modes are of considerable distance from the origin, given the 

fundamental motivation to incorporate the possibility of sizeable asset price movements.  In 

addition, jumps might also be symmetrically distributed around the means, which is not a feature 

of exponential distributions.   

Therefore, a useful alternative distribution would be bi-modal with jumps symmetrically 

distributed around modes of sufficient distance from the origin.26  To arrive at such a density, 

consider a general Gaussian mixture, as in  

(22) 

( ) ( )2

22
1

1 exp
22

n
i

i
i ii

J
f J w

α
γπγ=

⎡ ⎤−
= −⎢ ⎥

⎢ ⎥⎣ ⎦
∑  

where ( )f J is the total density of the mixture, iw is the weight assigned to the ith component 

Gaussian distribution, n is the number of component distributions in the mixture, iα is the mean 

of the ith component distribution, and 2
iγ is the variance of the ith component distribution.  For 

this specific application, n = 2, which results in    

(23) 

( ) ( ) ( ) ( )2 2
1 2

2 2
1 21 2

1
exp exp

2 22 2 2
J w Jwf J

α α
γ γπγ πγ

⎡ ⎤ ⎡ ⎤− − −
= − + −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
. 

Also, the moment generating function for this distribution, ( )Jm θ , follows 

                                                 
26 Insofar as the short rate is a policy rate, such as the federal funds rate in the U.S., one could also make the case 
that jump sizes follow a discrete multinomial distribution.  Such a distribution can also be bi-modal, with the modes 
sufficiently far from the origin.  However, a pure jump process, as opposed to a jump-diffusion, might better 
characterize the target funds rate process.  See Piazzesi (2005) for an analysis of jumps and the target federal funds 
rate. 
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(24) 

( ) ( )2 2 2 2
1 1 2 2

1 1exp 1 exp
2 2Jm w wθ μ θ θ γ μ θ θ γ⎡ ⎤ ⎡ ⎤= + + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

Returning to the fundamental PDDE of bond prices for jump-diffusions and remembering that 

the expectation resembles the m.g.f., where ( )B τ−  is the constant, the PDDE in the case of the 

Gaussian mixture becomes  

(26) 

( )

( ) ( )

2
2

2

2 2 2 2
1 1 2 2

0 1
2

1 1, exp 1 exp 1
2 2

P P Pa b r rP
r r

hP r w B B w B B

λσ σ
τ

τ μ γ μ γ

⎡ ⎤
⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

= ∂ ∂ ∂− − − + −
∂ ∂ ∂

+ − + + − − + −
 

which can only be solved numerically.27 

Turning to the approximations of the PDDE, recall that the standard linearization 

technique requires only the first and second moments of J, and therefore the PDDE follows 

(25) 

( )

( ) ( )
( ) ( ) ( )

2

2
2

2

2 2 2 2
1 1 2 2

1 2

0 1
2

1
, 1

2

P P Pa b r rP
r r

w w
hP r w w B B

λσ σ
τ

α γ α γ
τ α α

⎡ ⎤
⎣ ⎦

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦⎡ ⎤−⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

= ∂ ∂ ∂− − − + −
∂ ∂ ∂

+ + − +
+ + − +

 

The solution to this equation again follows (16) but with ( )1 1 21M ab h w wλσ α α= − + − + −⎡ ⎤⎣ ⎦  , 

( ) ( ) ( )( )2 2 2 2 2
2 1 1 2 2

1 1
2

M h w wσ α γ α γ⎡ ⎤= + + + − +⎣ ⎦ , 3 0M = , and 4 0M = .28  With respect to the 

corresponding alternative approximation that considers the two-term Taylor series approximation 

of the m.g.f. of the distribution, (24), the approximate PDDE follows,  

(26) 

                                                 
27 One could entertain the possibility that the weight between the two distributions is functionally dependent on the 
distance between r and b.  That is, negative (positive) jumps might be more likely if r is sufficiently above (below) 
the mean. 
28 Notably, one does not obtain the same result if one takes the one-term Taylor series approximation of the m.g.f. of 

the Bernoulli mixture of Gaussians.  In this case, ( )( )2 2 2
2 1 211

2
wM h wσ γ γ⎡ ⎤−⎣ ⎦= + + . 



 17

( )

( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2 2 2
1 2 1 1 2 2

2 2 3 4 4 4
1 1 2 2 1 2

2
2

20

11 1
2

1 11 1
2 8

1
2

, w w B w w B

w w B w w B

P P Pa b r rP
r r

hP r α α γ α γ α

α γ α γ γ γ

λσ σ
τ

τ

⎡ ⎤
⎣ ⎦

⎧ ⎡ ⎤⎡ ⎤⎨ ⎣ ⎦ ⎣ ⎦⎩
⎫⎡ ⎤ ⎡ ⎤ ⎬⎣ ⎦ ⎣ ⎦ ⎭

=

− + − + + + − +

− + − + + −

∂ ∂ ∂− − − + −
∂ ∂ ∂

+  

where the solution again follows (16) but with ( )1 1 21M ab h w wλσ α α= − + − + −⎡ ⎤⎣ ⎦ , 

( ) ( ) ( )( )2 2 2 2 2
2 1 1 2 2

1 1
2

M h w wσ γ α γ α⎡ ⎤= + + + − +⎣ ⎦ , ( )2 2
3 1 1 2 2

1 1
2

M h w wα γ α γ⎡ ⎤= − + −⎣ ⎦ , and 

( )4 4
4 1 2

1 1
8

M h w wγ γ⎡ ⎤= + −⎣ ⎦ . 

 Similar to Table 1, Table 5 shows prices and yields based on the numerical estimation, 

the standard linearization technique, and the alternative closed-form approximation in Columns 2 

and 3, Columns 4 and 5, and Columns 7 and 8, respectively.  The chosen parameters follow 

those in Tables 1 and 3 as closely as possible; the component distributions of the Gaussian 

mixtures have means of 60 and -40 basis points, with standard deviations of 15 and 10 basis 

points, respectively; and the probability of a positive jump is 40 percent.  As Column 6 indicates, 

the average absolute difference across the maturity spectrum between the numerical solution and 

the standard linearization approximation is about 0.18 basis points, and the precision seems to 

decrease with maturity.  Also, Column 9 indicates that the alternative closed-form approximation 

is on average within about 0.15 basis points of the numerical solution, and Column 10 indicates 

that the alternative is consistently more precise than the standard method out the term structure 

but, at lease given this set of parameters, does not provide much greater accuracy.29        

 With respect to alternative parameterizations, the unconditional variance of the short-rate 

process under the Gaussian mixture assumption follows 

(27) 

( ) ( ) ( )2 2 2 2 2
1 1 2 21

2

h w w

a

σ α γ α γ⎡ ⎤+ + + − +⎣ ⎦ , 

and the relative contribution of diffusion is just over 25 times that of jumps given the parameter 

values in Table 5.  Table 6 considers an alternative parameterization in which jumps contribute 

about twice as much as the diffusive component to total variance, with σ = .02, h = 31, and the 
                                                 
29 Again, given no closed-form solution, one ultimately cannot judge the accuracy of the numerical approximation. 
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remaining parameters as in Table 5.30  Similar to Tables 2 and 4, the results generally suggest 

that both closed-form approximations become somewhat less accurate the more jumps contribute 

to total variance in the short rate.  For example, Column 9 indicates that the alternative closed-

form approximation is on average within about 0.466 basis points of the numerical solution 

across the maturity spectrum and just over a basis point at 30 years.  However, the absolute 

degree of precision is roughly comparable. 

 

4.3.  A “Restricted” Bi-modal Mixture of Gaussians  

A few simplifying assumptions regarding the Gaussian mixture seem intuitive.  That is, 

perhaps the component distributions of J are simply symmetric reflections across the origin, with 

equal but opposite means and equal variances.  Under this formulation, 2 1α α= − , 2 1γ γ= , and w 

= 0.5, and the PDDE using the alternative closed-form approximation becomes 

(28) 

( ) ( ) ( )2 2 2 4 4
1 1 1

2
2

2
1 10 ,
2 8

1
2

hP r B BP P Pa b r rP
r r

τ γ α γλσ σ
τ

⎧ ⎫⎡ ⎤ ⎡ ⎤+ ⎨ ⎬⎣ ⎦⎣ ⎦ ⎩ ⎭
= + +∂ ∂ ∂− − − + −

∂ ∂ ∂ . 

The solution again follows (16) but with 1M ab λσ= − + , ( )2 2 2
2 1 1

1
2

M hσ γ α⎡ ⎤⎣ ⎦= + +  , 

3 0M = , and 4
4 1

1
8

M hγ= .  Interestingly, the bi-modal Gaussian mixture implies an approximate 

PDDE that is no more complex than that under the assumption that J is normally distributed (and 

uni-modal).  Also, this “restricted” Gaussian mixture requires three fewer parameters to estimate 

than the full model and the same number as the model in which J is Gaussian and uni-modal. 

 

4.4.  How Critical is the Distributional Assumption for Jumps? 

 How sensitive are estimates for bond yields to the distributional assumption for jumps?  

More specifically, what is the cost in accuracy of assuming that jumps are uni-modal and 

normally distributed if the “true” distribution is, say, a bi-modal mixture exponentials or 

Gaussians?  One imperfect way to address this issue is to assume a constant mean and variance 

for jump size but alter the specific form of the distribution and compare the corresponding 

                                                 
30 The precise ratio of the diffusive to jump contributions to total variance given the parameterization in Table 5 
(Table 6) is 25.098 (0.506009). 
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closed-form approximations for yields derived from the two-term Taylor series approximations 

of the m.g.f. in the bond pricing equation.  Toward that end, Column 2 in Table 7 shows the term 

structure of interest rates out to 30 years given the parameter assumptions in Table 1, which 

again stipulate that jumps are normally distributed with a zero mean and a standard deviation of 

100 basis points.31  Alternatively, Column 3 shows the results with the same mean and variance 

as in Column 2, but jumps follow the exponential distribution described in Das and Foresi 

(1996).32  Similarly, Column 4 shows the term structure assuming jumps follow a bi-modal 

Bernoulli mixture of Gaussians,33 and Column 5 follows its “restricted” form where 2 1α α= − , 

2 1γ γ= , and w = 0.5.34   

 Given this particular set of parameters and holding constant the mean and variance for 

jumps, the implied term structure of interest rates displays marginal differences across 

distributional assumptions for J.  For example, the average difference across each maturity 

between the uni-modal Gaussian and the exponential, Gaussian mixture, and “restricted” 

Gaussian mixture is only about 0.18, 0.28, and 0.08 basis points, respectively, as shown in 

Columns 6, 7, and 8.  Table 8 considers an alternative set of parameters where the intensity of 

jumps increases fivefold, with h = 50, but the standard deviation of jumps is 50 basis points, half 

the size assumed in Table 7.35  With average absolute differences of about 0.06, 0.18, and 0.06 

basis points across the term structure for the three distributional assumptions, Columns 6, 7, and 

8 again suggest that alternative distributional assumptions do not seem to have a pronounced 

affect on yields using the alternative closed-form approximation, at least for this 

parameterization.    

                                                 
31 Therefore, the estimates match Column 8 in Table 1. 
32 In order for jumps to have a standard deviation of 100 basis points for the exponential distribution, we must have 
α = 141.421. 
33 For the Bernoulli mixture of Gaussians, the parameters follow those in Table 5, but in order for the distribution to 
match the variance of the uni-modal Gaussian assumption, we must have γ1 = 0.00901436 and  γ2 = 0.00851436.  
(The difference in standard deviations of the two component distributions is fixed at five basis points.)  Notably, 
given means of 60 and -40 basis points, standard deviations of about 90.1 and 85.1 basis points, respectively, seem 
excessive in that the component distributions for both positive and negative jumps have considerable mass on the 
opposite side of the origin. 
34 In order for jumps to have a standard deviation of 100 basis points for the “restricted” bi-modal Bernoulli mixture 
of Gaussians, we must have γ1 =  0.00866025. 
35 Lowering the stipulated value of the variance of J to 50 basis points produces considerably more intuitive 
assumptions for the Bernoulli mixture of Gaussians, as γ1 = 0.00126954 and  γ2 = 0.000769536.  Therefore, there is 
negligible mass on the opposite side of the origin for the component distributions for positive and negative jumps.  
(However, to meet the restriction in the case of the “restricted” Bernoulli mixture of Gaussians, we must have γ1 = 
0.)  Also, for the exponential distributions, α = 282.843. 
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One should not necessarily make strong inferences about the relative importance of 

distributional assumptions for J from this imperfect exercise.  In particular, while one must hold 

the first and second moments constant across distributional assumptions to facilitate 

comparisons, variance has less meaning without the full context of the distribution.  For 

example, the assumption that the variance of jumps is 100 basis points, the stipulation in Table 1, 

may seem sensible in the context of a uni-modal normal distribution centered around the origin, 

but, say, a Bernoulli mixture of Gaussians with the same (overall) variance might not have much 

intuitive appeal.   Moreover, there is no substantive reason to knowingly use the “wrong” 

distribution.  Perhaps consideration of actual data would be instructive in this regard, and indeed 

the discussion now turns to parameter estimation.         

 

5.  Parameter Estimation 

 Although there is a burgeoning literature on parameter estimation methods for ATSMs in 

which the underlying state variables follow pure diffusion processes, comparatively few studies 

address the case of jump-diffusion (Das, 2002, p. 34).  This section considers three general 

methods to estimate a single-factor model of the term structure of United States Treasury yields 

using data from January 4, 1988 through October 12, 2005.  Although previous studies have 

produced mixed results, the analysis first considers the general method of moments (GMM) and 

then turns to two applications of maximum likelihood estimation (MLE).  Both MLE 

applications use a discrete analogue to the continuous short-rate process.  But, one relies on 

direct proxies for the short rate, and another exploits the closed-form approximations for bond 

prices (and yields) to transform the approximate density similar to Pearson and Sun (1994).  

 

5.1.  GMM  

Parameter estimation of the model using a variant of the GMM is as follows.  The 

backward Kolmogorov equation implied by the jump-augmented stochastic process for the short 

rate, (1), can be solved to obtain the conditional characteristic function (c.c.f.).  In turn, one can 

derive (conditional and unconditional) moments of the distribution from the c.c.f., expressed as a 

function of the moments of J and other model parameters.  Given a specific distributional 

assumption and a corresponding m.g.f. for J, one can then match the (conditional and/or 
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unconditional) moments from the c.c.f. with corresponding (conditional and/or unconditional) 

sample moments to determine the model parameters. 

To derive the c.c.f. and the moments of the distribution, consider again expression (1).  

Following the general approach in Heston (1993), Bates (1993), Das and Foresi (1996), and Das 

(2002), assume that the current time is t = 0 and that one is interested in the distribution of r(τ) at 

time t = τ , given the current value of the interest rate r(0) = r.  To derive the τ-interval 

characteristic function for the process, ( ), ;rφ τ ξ , one can solve the implied backward 

Kolmogorov equation, which is twice-differentiable in the interest rate, is once-differentiable in 

τ, has initial data ( ) ( ),0; expr i rφ ξ ξ=  with arbitrary parameterξ , and follows 

(29) 

( ) ( ) ( )
2

2
2

10 , ,
2 ta b r hE r J t r t

r r
φ φ φσ φ φ
τ

∂ ∂ ∂
= − + − + + + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂ ∂ ∂

. 

 

The conjectured (affine) solution to the above equation is  

(30) 

( ) ( ) ( )ˆ ˆ, ; exp ; ;r A rBφ τ ξ τ ξ τ ξ⎡ ⎤= −⎣ ⎦ , 

where 

( )ˆ ; aB i e ττ ξ ξ −= −  

and  

( ) 2 2 21ˆ ; 1
2

aa a i e J
tA iab e e hE e d

ττ τ ξτ ξ ξ σ ξ τ
−− − ⎡ ⎤= − + −⎣ ⎦∫ . 

In general, one can derive the nth conditional moment, μc,n, of the distribution for the interest rate 

from the c.c.f. following 

(31) 

,
0

n
n

c n ni
ξ

φμ
ξ

−

=

∂
=

∂
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Furthermore,36 under the (unproblematic) restriction that a > 0, the first four unconditional 

moments, μn, which follow ,limn c nτ
μ μ

→∞
= , are 

(32) 

[ ]

( )

( ) ( )

1

2 2
2

2 1

2 2 3
13

3 1

22 2 2 2 23 4
1 14

4 1 2
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3
,

2 3

6 34
2 3 4 4

t

t

t t

t tt t

hE J
b
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hE J

a
hE J hE J
a a

hE J hE JhE J hE J
a a a a

μ

σ
μ μ

μ σ
μ μ

μ σ σμ
μ μ

= +

⎡ ⎤+ ⎣ ⎦= +

⎡ ⎤+ ⎡ ⎤⎣ ⎦ ⎣ ⎦= + +

⎡ ⎤ ⎡ ⎤+ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦= + + + +

 

Note that these are the exact unconditional moments of the short rate process with no 

approximations.  Distributional assumptions regarding J are required to proceed further, and one 

can determine the n
tE J⎡ ⎤⎣ ⎦  in (32) from the relevant m.g.f.  (In the case of the bi-modal Gaussian 

distribution, under the physical measure, the model requires estimates of nine parameters, 

including three associated with the drift and diffusion of the process – a, b, and σ – and six from 

the jump component – h, w, α1, α2, γ1, γ2.) 

Given specification of the moments from the characteristic function, the (unconditional) 

sample moments follow 

(33) 

1

1ˆ
N

n
n

i

r
N

μ
=

= ∑  

where N is the number of observations, and r is the proxy for the interest rate observed at some 

frequency.  Consider the difference between (32) and (33) for an arbitrary number of 

unconditional moments, as in  

(34) 

                                                 
36 Similarly, Das (2002) derives the c.c.f. and the corresponding conditional (rather than unconditional) moments 
with respect to the physical measure. 
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1 1 1

2 2 2

ˆ
ˆ

ˆn n n

f
f

f

f

μ μ
μ μ

μ μ

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

. 

Denoting the set of parameters by Ψ , the GMM estimator is 

(35) 

ˆ
ˆ arg min

Ψ
Ψ = ϒ  

with 

'f Wfϒ = , 

where W is some weighting matrix,37 and ( )1 2 1 2
ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , , , , , , ,a b h wσ α α γ γΨ =  if J follows a Bernoulli 

Gaussian mixture.  The standard errors for the ith parameter in Ψ follow iiΣ  , where 

 'f fW∂ ∂
Σ =

∂Ψ ∂Ψ
. 

 

5.2.  GMM Results 

Given that estimation biases potentially result from the choice for the short rate proxy 

(Chapman et al., 1999), the analyses use three alternatives using daily data over the period from 

January 4, 1988 through October 12, 2005 – the overnight federal funds rate, following Das 

(2002), as well as one- and three-month U.S. Treasury bill rates also common in the literature.38  

The GMM estimations also examine five alternative assumptions regarding jumps, including a 

base model without jumps (the pure Gaussian Vasicek model) and jump-diffusion models where 

J alternatively follows a uni-modal Gaussian, a Bernoulli Gaussian mixture and its “restricted” 

form, and a bi-modal mixture of uniform distributions.  The estimates are under the physical 

measure, following previous literature (Das, 1998), and use the first ten moments of the short-

rate process. 

Table 9 includes estimates for the Vasicek model as well as the model that assumes jumps 

are normally distributed.  With respect to the former, as Columns 1-3 indicate, each estimate of a 

and b – the mean reversion and central tendency parameters, respectively – is positive, 
                                                 
37 W is usually defined by the inverse of the variance-covariance matrix of the sample moments. 
38 With respect to the controversy over proxies for the short rate, Hamilton (1996) notes that microstructure effects 
such as settlement Wednesdays and quarter-ends induce jumps in daily federal funds rate series. 
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statistically significant, and very generally consistent with findings in previous literature across 

the three short rate proxies.  The estimates for the diffusion parameter, σ, are positive and of the 

generally expected magnitude, but they are statistically insignificant from zero in each case.  

Turning to the latter model with jumps that are uni-modal and normally distributed, the GMM 

estimates in Columns 4 and 6 using the federal funds rate and the three-month bill yield as 

proxies suggest that a, b, and h are positive and statistically significant.  The remaining estimates 

are of plausible magnitude but are not statistically significant.  Also, as Column 5 indicates, only 

the estimate of h is statistically significant using the one-month bill as the proxy for the short 

rate.  Notably perhaps, the three proxies produce a range of estimates for jump intensity. 

Table 10 presents the results for models that assume jumps follow a Bernoulli mixture of 

Gaussians, and Columns 1-2 suggest that a is positive, statistically significant, and of a 

magnitude that is generally consistent with intuition.  In addition, h is statistically significant 

using each proxy, but the estimates of 68.02 and 76.48 jumps per year using the federal funds 

rate and the three-month bill yield as short rate proxies seem excessive.  None of the other 

parameters are statistically significant.  Columns 4-6 present the results from the “restricted” 

model for the mixture of Gaussians.  The estimates of b and h are positive, statistically 

significant, generally consistent with intuition, and quite similar in magnitude across each proxy 

for the short rate, but none of the other estimates, except b in Column 10, are statistically 

significant.  

Finally, Table 11 presents the results under the assumption that J follows a Bernoulli 

mixture of uniform distributions.39  Jump intensity is statistically significant and positive using 

each of the three short rate proxies.  However, the estimates of 103.51 and 163.10 jumps per year 

in Columns 1 and 3, respectively, are incredible.  Also, the estimate for w using the federal funds 

rate proxy is perversely negative and statistically significant, and none of the other estimates, 

expect that for a using the three-month bill proxy, are statistically significant. 

                                                 
39 Given the m.g.f. of the mixture of uniform distributions, the approximate bond pricing equation becomes 

( ) ( ) ( ) ( )1 1 2 2

2
2

2
1 1
2

0 1
2

w w BhPP P Pa b r rP
r r

ω υ ω υλσ σ
τ

⎡ ⎤ + + + − +⎡ ⎤⎣ ⎦⎣ ⎦= ∂ ∂ ∂− − − + −
∂ ∂ ∂

, 

and the approximate closed-form solution again follows (16) but with 

( ) ( ) ( )1 1 1 2 2
1 1 1
2 2

M ab h w wλσ ω υ ω υ⎡ ⎤
⎢ ⎥⎣ ⎦

= − + − + + − + , 2
2

1
2

M σ=  , 3 0M = , and 4 0M = . 
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In short, considering the dearth of statistically significant estimates and a few perverse 

findings, the GMM results are not very promising.40  Although the statistical significance of h in 

every specification broadly suggests evidence for jumps, the implied intensities vary widely 

across short rate proxies and distributional assumptions for J.  Notably, very broadly related 

estimations based on the method of cumulants produced perverse results for the volatility 

parameters for diffusion and J in jump-diffusion models of daily stock returns (Press 1967; 

Beckers, 1981).  However, that this application of GMM uses the exact continuous-time 

moments without approximation and is amenable to non-Gaussian-based distributional 

assumptions for J, such as the Bernoulli mixture of uniform distributions, perhaps recommends 

the approach as a reference.  Nonetheless, the discussion now turns to an alternative that 

previous literature endorses more enthusiastically.  

   

5.3.  MLE 

As noted in the context of GMM, in most cases, there is no closed-form expression for 

the c.c.f. or, most notably, its Fourier inverse, the conditional probability density function for the 

short rate.  MLE requires some key approximations and can only be applied if J follows a 

Gaussian form or is a mixture of Gaussians.  To begin, consider the corresponding discrete-time 

expression of the short rate process, 

(36) 

( ) ( )r a b r t W J qσ πΔ = − Δ + Δ + Δ , 

where the distribution of J is yet to be specified, WΔ is the discrete-time Weiner increment, and 

( )qπΔ is the discrete-time Poisson increment.  As in Ball and Torous (1983) and Das (1998, 

2002), given that the Poisson distribution governs the limit of a Bernoulli distribution, with 

parameter ( )q h t O t= Δ + Δ , one can approximate the likelihood function for the Poisson-

Gaussian model with a Bernoulli mixture of the normal distributions that characterize the 

diffusion and jump components of the process.  The critical assumption is that during the discrete 

                                                 
40 Results using an alternative W, the inverse of the variance-covariance matrix of the sample moments, as well as 
GMM using conditional as opposed to unconditional moments produce estimates that are even less consistent with 
intuition than those in Tables 9-11.  GMM has not met with considerable success in previous literature – the GMM 
estimates in Das (1998) were omitted in the published version of the paper (Das, 2002). 
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time increment, tΔ , either one jump occurs or no jump occurs.  Therefore, the assumption is 

increasingly tenable the higher the frequency of the data.   

Under this method and the assumption that J is uni-modal and normally distributed, the 

approximate transition probability for the short rate is 

(37) 

( ) ( )

( ) ( )
( )
( )

2 2

2 2 2

2 2 2

exp exp
2 2

| 1
2 2

t t t t t t t t

r t t t

r r a b r t r r a b r t
t t

f r r q q
t t

α
σ σ γ

πσ π σ γ

+Δ +Δ

+Δ

⎡ ⎤ ⎡ ⎤− − − − Δ − − − − Δ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥
Δ Δ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦= − +
Δ Δ +

. 

The MLE below extends the method used in Ball and Torous (1983), Das (1998, 2002), and Aït-

Sahalia (2004) to the assumption that jumps follow a Bernoulli mixture of Gaussians.  In this 

case, the approximate transition density function follows 

(38) 
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Δ +

 

That is, the transition density function indicates that there is no jump with probability 1 q− , the 

first term; there is a jump governed by the first component distribution with probability qw, the 

second term; or there is a jump governed by the second component distribution with probability 

( )1q w− , the third term.  (Note that the approximation does not impose that the two modes have 

the opposite sign.)   Also, under the “restricted” assumption that positive and negative jumps are 

equally likely, that the modes are equal in magnitude but opposite in sign, and the variances 

around the modes are equal, the density simplifies accordingly.  

 Given the appropriate density function for either the uni-modal or bi-modal Gaussian 

assumption, MLE follows 

(39) 

( )
1

ˆ max log |
T

tt t
t

f r r+ΔΨ =
Ψ = ∑ , 
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and the variance-covariance matrix of the estimates follows the Berndt-Hall-Hall-Hausman 

(BHHH) or outer product of gradients (OPG) method (See Greene, 1997, p. 139; Hamilton, 

1994, p. 143). 

 

5.4.  MLE Results 

 The MLE covers the same January 4, 1988 – October 12, 2005 period as the GMM 

estimation as well as the three alternative proxies for the short rate.  In addition, again, the 

approximation of the Poisson with the Bernoulli distribution requires the assumption that no 

more that one jump occurs during Δt, and therefore the analyses consider only daily and weekly 

data.41  A reasonable prior is perhaps that higher frequency data are more likely to pick up jumps 

in the (discrete) short rate process, but the remaining parameters should be insensitive to the 

frequency.   

 Turning to the estimates, Table 12 shows the results for the Vasicek (1977) model.42  The 

estimates that use the federal funds rate and one-month bill proxies produce statistically 

significant estimates with the expected signs and general magnitudes using both daily (Columns 

1-2) and weekly data (Columns 4-5).  However, the estimates using the three-month bill proxy at 

either the daily (Column 3) or weekly (Column 6) frequency produce both statistically 

insignificant estimates of a and b as well as perversely positive and statistically significant 

estimates of σ.  Turning to jump-diffusion processes, Table 13 includes the results for the model 

that assume jumps are uni-modal and normally distributed, which is the specification in Das 

(2002).  Each estimate for a, b, q, and γ is statistically significant and positive across the three 

proxies for the short rate using both daily and weekly data.  Also, an intuitive prior is that the 

mean jump size is statistically insignificant from zero, and indeed only the weekly estimate for 

α using the one-month bill (Column 5) is robust, and the parameter suggests that mean jump size 

is only 5.3 basis points.  However, while the estimates of σ are positive and statistically 

significant using daily and weekly data on the federal funds rate and weekly data on one-month 

bills (Columns 1, 4, and 5), the estimates are perversely negative and statistically significant 

using daily data on one-month bills and daily and weekly data on three-month bills (Columns 2, 

                                                 
41 Weekly data refer to Wednesday observations, and data cover January 6, 1988 through October 12, 2005. 
42 Of course, the Vasicek (1977) model has a closed-form solution and a closed-form density, and therefore 
approximations are unnecessary.  But for comparison, the estimates follow the approximate technique discussed 
previously. 
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3, and 6).  Notably, the results using the federal funds rate generally corroborate the findings in 

Das (2002), who considers a shorter sample from January 1988 through December 1997, but 

these results broadly suggest that previous findings are somewhat sensitive to either estimation 

period or short rate proxy. 

 Table 14 considers the assumption that jumps follow a Bernoulli mixture of Gaussians.  

As Columns 1-3 indicate, the parameter estimates that use daily data on all three short rate 

proxies are each statistically significant with the broadly expected magnitude.  For example, 

using the federal funds rate (one-month bill) (three-month bill) the probability of a jump any 

given day is about 0.137 (0.132) (0.175), and jumps in turn draw roughly evenly between 

distributions with means of about -66.1 (-67.4) (-87.7) and 25.6 (26.3) (36.8) basis points.  

However, the corresponding estimates that use weekly data are generally not as robust, although 

those for a, b, σ, and α1 are statistically significant across the three proxies in Columns 4-6.  The 

estimates of q, w, α2, and γ2 are statistically significant with the expected sign and general 

magnitude using the federal funds rate, but no other parameter using weekly data is robust.   

 Finally, Table 15 shows the parameter estimates under the assumption that jumps follow 

the “restricted” Bernoulli mixture of Gaussians.  As Column 1 indicates, daily data using the 

federal funds proxy produces statistically significant estimates for each parameter, but Columns 

2-3 suggest that daily data using one- and three-month bills produce statistically significant and 

intuitive estimates for a, b, q, α1 and γ1, but the estimates for σ are perversely negative and 

statistically significant.  Turning to weekly data, as noted in Column 6, data on the three-month 

bill produces statistically significant estimates with the generally expected magnitude and sign 

for each parameter, but the estimates of α1 are too close to zero.  In addition, while the results in 

Column 5 using the one-month bill produce significant estimates of a, b, q, and γ1, the estimates 

of σ and α1 are similarly incredible, and each parameter estimates expect that for b is statistically 

insignificant using weekly data on the federal funds rate (Column 4).  

 In general, the MLE using unconstrained optimization improves on the GMM estimates 

in that the method produces more statistically significant estimates that broadly accord with 

intuition, and consistent with Das (2002), the results provide some evidence for jumps in the 

short rate process.  However, there are a few problematic estimates of σ that are perversely 

negative, and the magnitude of the coefficients in some cases is clearly sensitive both to the 

choice of proxy for the short rate as well as data frequency. 
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5.5.  MLE with a Latent Factor   

The applications of GMM and MLE discussed in Tables 9-15, as well those in the 

literature, such as Das (1998, 2002), estimate the dynamics of the unobservable short rate 

directly with a proxy.  This section outlines an alternative, not found in the literature on ATSMs 

and jump diffusion processes, in which the short rate remains latent and the parameters are 

estimated using observable bond yields across the term structure.  The procedure is similar to 

Pearson and Sun (1994), who exploit a known conditional density and a closed-form solution for 

bond prices, a function of unobservable or latent factors.  Using the closed-form expression for 

bond prices, they express the latent variables in terms of the observable factors and compute the 

density of the observable factors using the Jacobian of the transformation. 

The application below differs from Pearson and Sun (1994) in three respects.  First, the 

analysis uses yields instead of bond prices.  Second, the application does not use the exact but 

rather the approximate densities initially described in Ball and Torous (1983) and employed in 

the previous section.  Third, given that few jump-diffusion models have closed-form solutions, 

the method uses the (alternative) closed-form approximation of bond prices (yields) that 

incorporates the two-term Taylor series approximation of the m.g.f. of the appropriate 

distribution, as outlined in Section 3.  That is, in the single-factor case, the density, f, for the 

likelihood function becomes  

(40) 

( ) ( )
|r tt ty

B
f y τ

τ+Δ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

where ty is the yield on a (portfolio of) bond(s).  Therefore, f is not evaluated at (the latent 

factor) r , but the short rate can be backed out from the proposed affine solution to the 

approximate PDDE following  

(41) 
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( )
( )
lny A

r
B

τ τ
τ

+
= .43 

Given the transformed density, which again exploits the approximate density and the 

approximate closed-form solution for bond prices, MLE proceeds as in the previous section. 

 

5.6.  MLE with a Latent Factor: Results 

 The estimates under this method use the same January 4, 1988 – October 12, 2005 

sample as Tables 9-15.  Also, generally following Kim and Wright (2005), ty  refers to an equally 

weighted portfolio of two Treasury bills and six constant maturity zero-coupon yields along an 

estimated Svensson term structure based on off-the-run Treasury securities.44  (The maturity 

points are three and six months and one, two, four, seven, 10, and 20 years.)  Data are sampled at 

daily and weekly frequencies.    

 Turning to the results, as Columns 1 and 2 in Table 16 indicate, the magnitude of the 

estimates using this method for the Vasicek model are largely consistent across daily and weekly 

data, and each is statistically significant from zero.  With respect to jump diffusion processes, as 

noted in Column 3, the model that assumes jumps are Gaussian and uses daily data only 

produces statistically significant parameter estimates for σ, q, and γ, and as indicated in Column 

4, only a, b, and σ are robust using weekly data.  The results for the model in which jumps 

follow a Bernoulli mixture of Gaussians are also inconclusive.  Given daily data, a, σ, q, γ1, α2, 

and γ2 are statistically significant, but the estimate of b is perversely negative and robust, and 

both α1 and w are statistically insignificant (Column 5).  Also, as noted in Column 6, the weekly 

data only produce statistically significant estimates of σ and γ2.  Finally, the method using daily 

data regarding the assumption that jumps follow the “restricted” Bernoulli mixture of Gaussians 

produces statistically significant estimates for a, σ, q, and γ1, as noted in Column 7, but b and α1 

are not robust.  Also, although the estimates of a and b are statistically significant using weekly 

                                                 
43 This follows from the simple relation that ( ), yP r e ττ −= .  Note that the relevant Jacobian (in the single factor 

case) follows [ ] ( )
( ) ( )
lny Ad dr

dy dy B B
τ τ τ

τ τ
⎡ ⎤+

= =⎢ ⎥
⎣ ⎦

. 

44 Kim and Wright (2005) do not use the 20-year horizon, and they also account for measurement error. 
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data, Column 8 indicates that, although perhaps with the expected signs, none of the remaining 

estimates are robust. 

 The parameter estimates using GMM and MLE thus far have only addressed the short 

rate process with respect to the physical measure.  Given the presence of λ in the closed-form 

solutions to the approximate PDDE for bond prices, as in (16), the estimates in Tables 9-16,45 

although perhaps helpful in identifying the presence and the distributional characteristics of 

jumps, would be of little use in a full application of the model (i.e. for pricing bonds).  The risk-

neutral short rate process follows 

(42) 

( ) ( )dr a b r dt dW Jd hλσ σ π= − − + +⎡ ⎤⎣ ⎦ , 

and notably, given that the derivation of the bond pricing equation (in the single factor context) 

requires two bonds,46 information from more than one point along the yield curve should inform 

estimates of λ.  Of course, parameter estimates that rely on a single proxy for the short rate, as in 

Tables 9-15, do not fulfill this requirement, but the transformed densities based on the portfolio 

of bonds should permit estimates of λ.    

 Toward that end, Table 17 augments the analysis in Table 16 to include estimates of λ, 

and the results generally suggest some difficulty in estimating the risk-neutral jump-diffusion 

model.  That is, although λ is statistically significant with the expected negative sign in Columns 

1, 2, and 4, the estimate is perversely positive and statistically significant in the daily model that 

assume jumps follow a Gaussian mixture (Columns 5), and the remaining estimates (Columns 3, 

6, 7, and 8) are not robust.   

 

6.  A Two-Factor Jump-Diffusion Model of the Term Structure  

This section extends the analysis in previous sections to consider a second factor, namely 

a time-varying central tendency, b, roughly following Balduzzi et al. (1998), who do not examine 

jump processes.  The dynamics for the (unobservable) state variables in such a two-factor model 

follow 

(43) 

                                                 
45 Das (2002) does not provide estimates of the market price of (diffusion) risk. 
46 For example, see Vasicek (1977). 
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( ) rdr a b r dt dW Jdσ π= − + +  

and 

( ) bdb b dt dWκ β φ= − +  

where κ is the reversion rate, β is the long-run mean of b, and rdW and bdW  – the Weiner 

increments for the short-rate and the central tendency, respectively – are assumed in this simple 

case to be uncorrelated.   Of course, (43) suggests that the short-rate follows a jump diffusion, 

but its central tendency does not.  This formulation might be somewhat problematic in that both 

state variables ultimately relate to the level of the short rate, yet only r jumps.  But, given its 

relation to a longer-run average, the central tendency is perhaps better characterized by a process 

that (exclusively) diffuses through all possible points rather than jumps across values.47   

Again assuming that all time variation is through the state variables, that jump risk is 

diversifiable, and therefore that the dynamics of the pricing kernel follow 

(44) 

r r b
d rdt dW dWθλ λΛ

= − − −
Λ

, 

where rλ and bλ denote the market prices of diffusion risk for r and b, respectively, the PDDE for 

bond prices is 

(45) 

( ) ( ) ( )2 2
2 2

1 10 exp 1
2 2 t r

P P P P P P Pa r hPE JB Pr
r r r θθ σ κ β θ φ τ λ σ λ φ

θ θ τ θ
∂ ∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤= − + + − + + − − − − − −⎡ ⎤⎣ ⎦⎣ ⎦∂ ∂ ∂ ∂ ∂ ∂ ∂

 

Conjecturing an affine solution of the form, ( ) ( ) ( ) ( ), , expP r b A B r C bτ τ τ τ= − −⎡ ⎤⎣ ⎦ , and noting 

the correpsonding derivatives, the PDDE reduces to the following system of three ODEs,  

(46) 

1,

,

B aB

C C Ba

τ

κ
τ

∂
+ =

∂
∂

+ =
∂

 

and 

                                                 
47 For example, one might expect the short rate to jump in response to economic news or central bank decisions, 
whereas the central tendency would be more likely to diffuse through all possible points before settling at its new 
value. 
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( ) ( )2 2 2 21 1exp 1 0
2 2r t b

AA B B hE JB C Cλ σ σ τ κβ λ φ φ
τ

∂⎧ ⎫⎡ ⎤+ + − − − − + − =⎡ ⎤⎨ ⎬⎣ ⎦⎣ ⎦ ∂⎩ ⎭
. 

Under the assumption that jumps follow the “restricted” Bernoulli mixture of Gaussians, and 

given the initial data that ( )0 1A = , ( )0 0B = , and ( )0 0C = , the closed-form solution to the 

approximate PDDE follows  

(47) 
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−
.48 

 Estimation of the parameters of the model follows an extension of the MLE method 

outlined in Section 5.5.  Given the (approximate) affine solution in the two-factor case, one can 

express the latent factors, r and b, in terms of the observed yields on two bond portfolios, as in 

(48) 

( ) ( ) ( )1 1 1
1

1

ln t tA B r C b
y

τ τ τ
τ

− + +
=  

                                                 
48 In the two-factor case, in order for the condition ( )lim , , 0P r b

τ
τ

→∞
= to be met, we must have 

( ) ( )2 2
1 2 3 4 5 2 0M M M M a M a aκ κ κ+ + + − + + − < . 
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and 

( ) ( ) ( )2 2 2
2

2

ln t tA B r C b
y

τ τ τ
τ

− + +
= . 

These equations in turn imply 

(49) 
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And, the Jacobian of the transformation follows 

(50) 
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Therefore, again assuming the Weiner increments of r and b are uncorrelated, the (approximate) 

density function follows 

(51) 

( ) ( ) ( ) ( ) ( ) ( )
1 2

1,
1 2 2 1

1, 2, 2,| |r bt t t t t ty y
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f y f y τ τ
τ τ τ τ+Δ +Δ −

, 

which permits standard MLE. 

 Of course, increasing the number of state variables makes parameter estimation more 

complicated.  Table 18 reports estimates for the two-factor model given data and weekly 

observations from the same sample period in the previous section.  Two equally-weighted 

portfolios are formed for estimation from eight maturity points along the yield curve.  The first 

portfolio includes yields at three and six months and from one to two years, and the second 

includes yields at four, seven, 10, and 20 years, and similar to Tables 9-17, the results in 

Columns 1-2 in Table 18 are based on unconstrained optimizations using daily and weekly data, 

respectively.   The daily data produce statistically significant results for each parameter with the 

expected signs.  However, the magnitudes for some of the coefficients are inconsistent with 
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intuition, as, for example, the estimate for q seems implausibly low, and those for α1 and λb seem 

excessively large in absolute value.  Turning to the weekly data, most of the estimates in Column 

2 are statistically insignificant, and among those that are robust, the parameters are too 

suspiciously close to the starting values in the optimization.49  

 Rather than unconstrained optimizations of the 10 parameters simultaneously, Columns 

3-4 present the results from three-stage estimations in which the Vasicek parameters, a, σ, and λ; 

the jump parameters, q, α1 and γ1; and the time-varying central tendency parameters, κ, β, φ, and 

λb are separately estimated in sequential order using daily and weekly data, respectively.  In 

addition, the optimizations are constrained such that the market prices of risk are non-positive 

and the remaining parameters are non-negative.  Although most of the parameters are robust with 

the expected sign and general magnitudes, neither estimate for a or λr is statistically significant 

using daily or weekly data.  Moreover, q and α1 are not robust using weekly data, and λb is not 

significant from zero using daily data. 

 

7.  Conclusions 

Incorporating the possibility of non-local changes in the short rate (or other latent factors) 

considerably complicates both the derivation of solutions for bond prices as well as the 

estimation of parameters in ATSMs.  Regarding the issue of solving the bond pricing equation 

under jump-diffusion, the preceding analysis expands upon existing linearization techniques that 

simplify the PDDE in two general ways.  First, this paper proposes an alternative approximate 

PDDE that in some cases seems to provide considerable gains in accuracy.  Second, the analysis 

considers a richer set of presumed distributions for jumps.  While previous literature on 

linearization techniques (Baz and Das, 1996; Ahn and Thompson, 1988) exclusively considers 

the assumption that jump sizes are normally distributed, this paper considers alternatives, 

including an exponential/Bernoulli density from Das and Foresi (1996) and the bi-modal 

Gaussian mixture described previously.  The former assumption is particularly useful in that the 

PDDE has a closed-form solution that enables comparison of the relative accuracy between 

numerical estimates and the approximate closed-form solutions.  Although the choice of 

parameters is ultimately an arbitrary exercise, the results suggest that the alternative closed-form 

                                                 
49 Specifically, the starting values for the 10 parameters in the two-factor model optimizations are a = 1.525, σ = 
0.05, λ = -0.255, q = 0.25, α1 = 0.005, γ1 = 0.0005, κ = 1.2625, β = 0.045, φ = 0.005, and λb = -0.255. 
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approximation (rather than the standard linearization technique) under some specifications 

produces more accurate estimates of analytical solutions than numerical methods.  This finding is 

generally insensitive to whether the contribution of diffusion or jumps to the overall variance of 

the short rate process predominates.  With respect to other alternative assumptions, the Gaussian 

mixture follows the intuition that the jump size is bi-modally distributed and that the modes are 

sufficiently distant from zero.  This paper derives two closed-form approximate PDDEs under 

this distributional assumption, and the parameterizations suggest that the standard linearization 

technique provides very similar estimates vis-à-vis a numerical solution compared to the 

approximation that incorporates the m.g.f. of the bi-modal Gaussian mixture. 

With respect to parameter estimation of ATSMs that incorporate jumps, the preceding 

analyses employ GMM and MLE, and applications of the MLE either use direct proxies for the 

short rate or exploit closed-form solutions to the approximate bond pricing PDDE to express the 

latent factor(s), the short rate (and its central tendency), in terms of observable variable(s), 

portfolios of yields.  In short, the results from unconstrained optimizations using these methods 

for the one-factor model are broadly consistent with the presence of jumps, but given sensitivity 

analyses, the ranges of the remaining parameter estimates seem notably wide.  In addition, to 

extend the analysis to a multi-factor context, this paper outlines a closed-form solution to the 

approximate PDDE implied by a two-factor model (under which jumps follow a “restricted” bi-

modal Gaussian mixture).   

Beyond the challenges that parameter estimation poses, additional relaxations of the 

model seem intuitive.  For example, one potential possibility is that h is time-varying.  Anecdotal 

evidence suggests that most jumps do not occur at truly random times because monetary policy 

announcements and economic news releases are largely scheduled, and the jump intensity would 

seem to be very different during the (instantaneous) interval during which markets process any 

new information on monetary policy or the economy, compared to “quiet times” during which no 

announcement or release is on the calendar.50  In addition, given the presumed mean-reversion in 

the short-rate process, jump intensity might be a (deterministic or otherwise) function of r and b.  

                                                 
50 For example, Piazzesi (2005) models jump intensity differently on days when the Federal Open Market 
Committee (FOMC) meets.  Also, the results in Johannes (2004) suggest that jumps occur only when the 
announcements contain significant unexpected components. 
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Generally speaking, h might increase as the distance between b and r increases.51  Moreover, w 

might be a function of b and r, as one might expect positive (negative) jumps to be more likely if 

the short rate is substantially less than (greater than) its longer-run central tendency.  In short, 

any of these considerations would richen such jump-diffusion models but would of course 

additionally complicate parameter estimation and their practical application.  

                                                 
51 Irrespective of the longer-run central tendency, b, Johannes (2004) finds that jumps are more likely at higher 
interest rate levels, and he models intensity as a function of the level of the short rate.  
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Table 1:  Jump Size Distribution Assumption: Gaussian 
Parameter Assumptions: a = .1, b = .05, σ = .08, λ = -.5, λJ= 0, α = 0, γ = .01, h = 10, r = .05 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
      Alternative Alternative   
 Numerical Numerical Closed-form Closed-form  Closed-form Closed-form   
 Solution Solution Approx. Approx. |(3)-(5)| Approx. Approx. |(3)-(8)|  

Maturity (Prices) (Yields) (Prices) (Yields) (bps) (Prices) (Yields) (bps) (6)/(9) 
1 0.934069236 0.068204715 0.934069276 0.068204672 0.000428752 0.934069278 0.068204670 0.000449948 0.953 
2 0.846701167 0.083203730 0.846701112 0.083203762 0.000320405 0.846701161 0.083203734 0.000031980 10.019 
3 0.750872691 0.095506387 0.750872379 0.095506525 0.001386980 0.750872660 0.095506401 0.000141281 9.817 
4 0.655623186 0.105542267 0.655622294 0.105542607 0.003401387 0.655623178 0.105542270 0.000032289 105.343 
5 0.566448506 0.113673820 0.566446454 0.113674545 0.007245733 0.566448454 0.113673839 0.000185630 39.033 
6 0.486148003 0.120207028 0.486144327 0.120208288 0.012601852 0.486148004 0.120207028 0.000001491 8454.060 
7 0.415696372 0.125400023 0.415690473 0.125402050 0.020272123 0.415696340 0.125400034 0.000111923 181.126 
8 0.354954352 0.129470761 0.354945834 0.129473760 0.029994767 0.354954291 0.129470782 0.000214002 140.161 
9 0.303179960 0.132603192 0.303168628 0.132607344 0.041529478 0.303179931 0.132603202 0.000105782 392.594 

10 0.259363390 0.134952515 0.259349119 0.134958017 0.055023606 0.259363378 0.134952520 0.000045569 1207.472 
11 0.222429111 0.136649712 0.222411912 0.136656742 0.070300146 0.222429107 0.136649713 0.000016342 4301.888 
12 0.191347643 0.137805282 0.191327647 0.137813991 0.087088353 0.191347657 0.137805276 0.000061489 1416.332 
13 0.165189644 0.138512393 0.165167028 0.138522925 0.105320401 0.165189654 0.138512388 0.000048040 2192.347 
14 0.143145416 0.138849591 0.143120415 0.138862067 0.124763304 0.143145409 0.138849594 0.000036544 3414.048 
15 0.124525321 0.138883080 0.124498261 0.138897569 0.144885179 0.124525345 0.138883067 0.000130162 1113.112 
16 0.108750798 0.138668517 0.108721913 0.138685120 0.166028239 0.108750799 0.138668516 0.000005928 28009.767 
17 0.095340799 0.138252791 0.095310379 0.138271563 0.187717994 0.095340779 0.138252803 0.000121299 1547.565 
18 0.083897829 0.137675308 0.083866195 0.137696259 0.209514144 0.083897832 0.137675306 0.000018157 11539.236 
19 0.074094599 0.136969086 0.074062006 0.136992243 0.231569169 0.074094615 0.136969075 0.000118332 1956.937 
20 0.065661928 0.136161800 0.065628583 0.136187198 0.253979834 0.065661921 0.136161806 0.000053572 4740.926 
21 0.058378382 0.135276649 0.058344513 0.135304284 0.276349228 0.058378355 0.135276671 0.000219562 1258.638 
22 0.052061706 0.134332982 0.052027527 0.134362834 0.298514566 0.052061670 0.134333014 0.000319440 934.492 
23 0.046561605 0.133346913 0.046527310 0.133378949 0.320357649 0.046561570 0.133346945 0.000322330 993.882 
24 0.041753854 0.132331813 0.041719610 0.132366000 0.341866285 0.041753825 0.132331842 0.000289330 1181.580 
25 0.037535481 0.131298745 0.037501430 0.131335048 0.363029601 0.037535456 0.131298772 0.000270143 1343.844 
26 0.033820859 0.130256829 0.033787125 0.130295211 0.383819925 0.033820833 0.130256857 0.000286275 1340.737 
27 0.030538500 0.129213597 0.030505236 0.129253960 0.403637133 0.030538518 0.129213574 0.000223327 1807.380 
28 0.027628730 0.128174968 0.027595934 0.128217387 0.424186996 0.027628693 0.128175016 0.000477295 888.732 
29 0.025041131 0.127146054 0.025008937 0.127190415 0.443604632 0.025041091 0.127146109 0.000545707 812.899 
30 0.022733352 0.126130740 0.022701832 0.126176989 0.462489070 0.022733311 0.126130799 0.000596698 775.081 

AVERAGE     0.182374231   0.000182662 2737.000 
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Table 2:  Jump Size Distribution Assumption: Gaussian 
Parameter Assumptions: a = .1, b = .05, σ = .02, λ = -.5, λJ= 0, α = 0, γ = .01, h = 16, r = .05 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
      Alternative Alternative   
 Numerical Numerical Closed-form Closed-form  Closed-form Closed-form   
 Solution Solution Approx. Approx. |(3)-(5)| Approx. Approx. |(3)-(8)|  

Maturity (Prices) (Yields) (Prices) (Yields) (bps) (Prices) (Yields) (bps) (6)/(9) 
1 0.946931953 0.054528044 0.946932034 0.054527959 0.000855989 0.946932037 0.054527955 0.000889902 0.962 
2 0.890093038 0.058214642 0.890093051 0.058214635 0.000072435 0.890093133 0.058214589 0.000533915 0.136 
3 0.832279386 0.061195698 0.832278967 0.061195866 0.001676221 0.832279465 0.061195666 0.000316897 5.289 
4 0.775426276 0.063585592 0.775424672 0.063586109 0.005170304 0.775426344 0.063585570 0.000220253 23.474 
5 0.720792857 0.065480696 0.720788836 0.065481812 0.011157610 0.720792907 0.065480683 0.000138556 80.528 
6 0.669132375 0.066962228 0.669124278 0.066964245 0.020169058 0.669132374 0.066962228 0.000003710 5437.033 
7 0.620834572 0.068098660 0.620820569 0.068101883 0.032222468 0.620834587 0.068098657 0.000033852 951.873 
8 0.576038273 0.068947647 0.576016315 0.068952412 0.047649736 0.576038272 0.068947647 0.000000513 92878.259 
9 0.534715729 0.069557780 0.534683774 0.069564420 0.066403176 0.534715668 0.069557793 0.000125263 530.109 

10 0.496734188 0.069970023 0.496690491 0.069978820 0.087971389 0.496734185 0.069970024 0.000006530 13472.396 
11 0.461900080 0.070218790 0.461842897 0.070230045 0.112552032 0.461900030 0.070218800 0.000097945 1149.135 
12 0.429988271 0.070333112 0.429916290 0.070347064 0.139515272 0.429988232 0.070333120 0.000075526 1847.239 
13 0.400762747 0.070337360 0.400674863 0.070354230 0.168704315 0.400762687 0.070337372 0.000114810 1469.427 
14 0.373989263 0.070252014 0.373884607 0.070272005 0.199911221 0.373989080 0.070252049 0.000348405 573.790 
15 0.349442942 0.070094332 0.349321222 0.070117558 0.232258378 0.349442820 0.070094356 0.000233832 993.270 
16 0.326913665 0.069878698 0.326774619 0.069905286 0.265886758 0.326913543 0.069878721 0.000232091 1145.616 
17 0.306207471 0.069617200 0.306051126 0.069647242 0.300419932 0.306207333 0.069617226 0.000265221 1132.716 
18 0.287147585 0.069319942 0.286974197 0.069353499 0.335562232 0.287147425 0.069319973 0.000310550 1080.540 
19 0.269574156 0.068995356 0.269384173 0.069032461 0.371053634 0.269573975 0.068995391 0.000353631 1049.268 
20 0.253343458 0.068650459 0.253137481 0.068691127 0.406682852 0.253343255 0.068650499 0.000400832 1014.597 
21 0.238326758 0.068291077 0.238105516 0.068335303 0.442260323 0.238326532 0.068291122 0.000452858 976.599 
22 0.224409052 0.067922035 0.224173379 0.067969796 0.477610825 0.224408806 0.067922085 0.000498624 957.858 
23 0.211487778 0.067547307 0.211238580 0.067598568 0.512611635 0.211487508 0.067547363 0.000555123 923.420 
24 0.199471520 0.067170159 0.199209764 0.067224872 0.547128586 0.199471230 0.067170219 0.000605458 903.661 
25 0.188278824 0.066793252 0.188005516 0.066851359 0.581065870 0.188278517 0.066793317 0.000650737 892.935 
26 0.177837086 0.066418746 0.177553252 0.066480181 0.614349287 0.177836764 0.066418816 0.000695447 883.388 
27 0.168081534 0.066048374 0.167788205 0.066113066 0.646919694 0.168081197 0.066048448 0.000742958 870.736 
28 0.158954318 0.065683515 0.158652521 0.065751388 0.678730193 0.158953965 0.065683595 0.000794671 854.102 
29 0.150403702 0.065325250 0.150094444 0.065396226 0.709760359 0.150403324 0.065325337 0.000866079 819.510 
30 0.142383314 0.064974415 0.142067596 0.065048410 0.739948509 0.142382921 0.064974507 0.000920713 803.669 

AVERAGE     0.291876010   0.000382830 4457.384 
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Table 3:  Jump Size Distribution Assumption: Jump Size (Exponential), Jump Sign (Bernoulli)  
Parameter Assumptions: a = .1, b = .05, σ = .08, λ = -.5, λJ= 0, α= 200, h = 10, r = .05 

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

         Alternative Alternative    
 Closed-form Closed-form Numerical Numerical  Closed-form Closed-form  Closed-form Closed-form    
 Solution Solution Solution Solution |(3)-(5)| Approx. Approx. |(3)-(8)| Approx. Approx. |(3)-(11)|   

Maturity (Prices) (Yields) (Prices) (Yields) (bps) (Prices) (Yields) (bps) (Prices) (Yields) (bps) (6)/(12) (9)/(12) 
1 0.933997016 0.068282036 0.933997034 0.068282016 0.000196531 0.933997015 0.068282037 0.000010597 0.933997016 0.068282036 0.000000000 426040.409 22972.824 
2 0.846214110 0.083491433 0.846214122 0.083491426 0.000072620 0.846214085 0.083491448 0.000144221 0.846214110 0.083491433 0.000000008 8840.552 17557.045 
3 0.749516426 0.096109015 0.749516468 0.096108997 0.000184047 0.749516286 0.096109077 0.000622925 0.749516426 0.096109015 0.000000076 2436.504 8246.568 
4 0.653009465 0.106540914 0.653009530 0.106540889 0.000251077 0.653009025 0.106541082 0.001684882 0.653009465 0.106540914 0.000000333 754.743 5064.794 
5 0.562338466 0.115130271 0.562338517 0.115130253 0.000181843 0.562337473 0.115130625 0.003531050 0.562338466 0.115130272 0.000000998 182.139 3536.785 
6 0.480464234 0.122167081 0.480464412 0.122167020 0.000618196 0.480462417 0.122167712 0.006304027 0.480464233 0.122167082 0.000002355 262.497 2676.804 
7 0.408495115 0.127896475 0.408495117 0.127896474 0.000006128 0.408492232 0.127897483 0.010084814 0.408495114 0.127896475 0.000004714 1.300 2139.541 
8 0.346384594 0.132525697 0.346384668 0.132525670 0.000269145 0.346380465 0.132527187 0.014898757 0.346384591 0.132525698 0.000008374 32.139 1779.093 
9 0.293443572 0.136229991 0.293443577 0.136229989 0.000017346 0.293438099 0.136232063 0.020725446 0.293443569 0.136229992 0.000013598 1.276 1524.123 
10 0.248683202 0.139157547 0.248683230 0.139157536 0.000113423 0.248676361 0.139160298 0.027509605 0.248683197 0.139157550 0.000020586 5.510 1336.323 
11 0.211026699 0.141433692 0.211026704 0.141433691 0.000019364 0.211018535 0.141437210 0.035171372 0.211026692 0.141433695 0.000029469 0.657 1193.485 
12 0.179429498 0.143164410 0.179429501 0.143164409 0.000011277 0.179420107 0.143168771 0.043615230 0.179429489 0.143164414 0.000040310 0.280 1082.007 
13 0.152939759 0.144439320 0.152939757 0.144439321 0.000010463 0.152929275 0.144444594 0.052737323 0.152939749 0.144439326 0.000053102 0.197 993.129 
14 0.130722469 0.145334197 0.130722467 0.145334198 0.000012891 0.130711044 0.145340440 0.062431166 0.130722457 0.145334204 0.000067786 0.190 920.997 
15 0.112062745 0.145913089 0.112062744 0.145913090 0.000008012 0.112050543 0.145920349 0.072591926 0.112062731 0.145913098 0.000084256 0.095 861.568 
16 0.096358284 0.146230119 0.096358284 0.146230120 0.000002705 0.096345470 0.146238431 0.083119451 0.096358268 0.146230130 0.000102368 0.026 811.968 
17 0.083106945 0.146331000 0.083106945 0.146331000 0.000001291 0.083093677 0.146340392 0.093920305 0.083106928 0.146331013 0.000121958 0.011 770.104 
18 0.071892897 0.146254323 0.071892897 0.146254322 0.000003344 0.071879322 0.146264814 0.104908996 0.071892879 0.146254337 0.000142845 0.023 734.425 
19 0.062373163 0.146032640 0.062373164 0.146032640 0.000003619 0.062359417 0.146044241 0.116008594 0.062373144 0.146032657 0.000164843 0.022 703.752 
20 0.054265433 0.145693393 0.054265434 0.145693391 0.000015942 0.054251635 0.145706108 0.127150896 0.054265412 0.145693411 0.000187765 0.085 677.183 
21 0.047337459 0.145259683 0.047337460 0.145259683 0.000006996 0.047323715 0.145273511 0.138276262 0.047337438 0.145259704 0.000211429 0.033 654.009 
22 0.041398082 0.144750942 0.041398085 0.144750939 0.000028720 0.041384484 0.144765875 0.149333225 0.041398061 0.144750965 0.000235662 0.122 633.675 
23 0.036289743 0.144183484 0.036289744 0.144183483 0.000007475 0.036276368 0.144199512 0.160277965 0.036289722 0.144183510 0.000260305 0.029 615.732 
24 0.031882319 0.143570986 0.031882319 0.143570986 0.000001162 0.031869232 0.143588094 0.171073686 0.031882298 0.143571015 0.000285208 0.004 599.820 
25 0.028068082 0.142924890 0.028068081 0.142924890 0.000001563 0.028055335 0.142943059 0.181689969 0.028068060 0.142924921 0.000310240 0.005 585.644 
26 0.024757588 0.142254740 0.024757588 0.142254741 0.000009683 0.024745226 0.142273950 0.192102104 0.024757567 0.142254773 0.000335279 0.029 572.961 
27 0.021876354 0.141568479 0.021876354 0.141568479 0.000004573 0.021864409 0.141588708 0.202290452 0.021876333 0.141568515 0.000360222 0.013 561.571 
28 0.019362146 0.140872691 0.019362146 0.140872692 0.000000757 0.019350643 0.140893915 0.212239828 0.019362125 0.140872730 0.000384978 0.002 551.304 
29 0.017162791 0.140172813 0.017162791 0.140172813 0.000000412 0.017151748 0.140195007 0.221938929 0.017162770 0.140172854 0.000409466 0.001 542.020 
30 0.015234401 0.139473307 0.015234401 0.139473307 0.000000992 0.015223829 0.139496445 0.231379809 0.015234381 0.139473350 0.000433622 0.002 533.598 

AVERAGE     0.000068720   0.091259127   0.000142405 14618.630 2714.428 
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Table 4:  Jump Size Distribution Assumption: Jump Size (Exponential), Jump Sign (Bernoulli)  
Parameter Assumptions: a = .1, b = .05, σ = .02, λ = -.5, λJ= 0, α= 200, h = 16, r = .05 

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

         Alternative Alternative    
 Closed-form Closed-form Numerical Numerical  Closed-form Closed-form  Closed-form Closed-form    
 Solution Solution Solution Solution |(3)-(5)| Approx. Approx. |(3)-(8)| Approx. Approx. |(3)-(11)|   

Maturity (Prices) (Yields) (Prices) (Yields) (bps) (Prices) (Yields) (bps) (Prices) (Yields) (bps) (6)/(12) (9)/(12) 
1 0.946814828 0.054651741 0.946814818 0.054651751 0.000101212 0.946814826 0.054651742 0.000016958 0.946814828 0.054651741 0.000000001 71159.182 11922.551 
2 0.889274056 0.058674909 0.889274057 0.058674908 0.000009841 0.889274014 0.058674932 0.000230754 0.889274056 0.058674909 0.000000014 711.046 16672.487 
3 0.829875535 0.062159849 0.829875528 0.062159852 0.000028293 0.829875287 0.062159949 0.000996681 0.829875535 0.062159849 0.000000121 233.181 8214.244 
4 0.770486148 0.065183400 0.770486149 0.065183400 0.000001985 0.770485318 0.065183670 0.002695812 0.770486148 0.065183400 0.000000533 3.725 5059.827 
5 0.712443352 0.067810975 0.712443389 0.067810965 0.000101969 0.712441340 0.067811540 0.005649680 0.712443352 0.067810975 0.000001598 63.823 3536.185 
6 0.656659352 0.070098314 0.656659352 0.070098314 0.000002001 0.656655378 0.070099323 0.010086443 0.656659351 0.070098314 0.000003768 0.531 2676.603 
7 0.603716397 0.072092962 0.603716400 0.072092961 0.000009084 0.603709578 0.072094575 0.016135702 0.603716393 0.072092963 0.000007542 1.205 2139.461 
8 0.553948203 0.073835512 0.553948261 0.073835498 0.000130368 0.553937640 0.073837895 0.023838011 0.553948198 0.073835513 0.000013399 9.730 1779.063 
9 0.507506434 0.075360654 0.507506495 0.075360641 0.000133923 0.507491288 0.075363971 0.033160714 0.507506424 0.075360657 0.000021757 6.155 1524.112 
10 0.464413165 0.076698068 0.464413203 0.076698060 0.000082633 0.464392724 0.076702470 0.044015368 0.464413150 0.076698071 0.000032938 2.509 1336.312 
11 0.424601232 0.077873166 0.424601242 0.077873164 0.000023328 0.424574949 0.077878794 0.056274195 0.424601210 0.077873171 0.000047151 0.495 1193.482 
12 0.387944573 0.078907734 0.387944568 0.078907735 0.000011176 0.387912088 0.078914712 0.069784368 0.387944543 0.078907740 0.000064495 0.173 1082.005 
13 0.354280601 0.079820463 0.354280598 0.079820464 0.000006014 0.354241741 0.079828901 0.084379716 0.354280562 0.079820472 0.000084964 0.071 993.127 
14 0.323426375 0.080627413 0.323426380 0.080627412 0.000010259 0.323381148 0.080637402 0.099889866 0.323426326 0.080627424 0.000108458 0.095 920.997 
15 0.295190057 0.081342391 0.295190088 0.081342384 0.000068405 0.295138634 0.081354006 0.116147082 0.295189998 0.081342405 0.000134809 0.507 861.568 
16 0.269378838 0.081977286 0.269378839 0.081977285 0.000002867 0.269321524 0.081990585 0.132991122 0.269378767 0.081977302 0.000163789 0.018 811.967 
17 0.245804245 0.082542342 0.245804241 0.082542343 0.000009563 0.245741459 0.082557369 0.150272488 0.245804163 0.082542361 0.000195133 0.049 770.104 
18 0.224285564 0.083046400 0.224285571 0.083046398 0.000018249 0.224217809 0.083063186 0.167854393 0.224285471 0.083046423 0.000228552 0.080 734.424 
19 0.204651890 0.083497097 0.204651902 0.083497094 0.000030613 0.204579729 0.083515658 0.185613750 0.204651787 0.083497123 0.000263749 0.116 703.752 
20 0.186743222 0.083901038 0.186743229 0.083901036 0.000020005 0.186667254 0.083921382 0.203441434 0.186743109 0.083901068 0.000300423 0.067 677.182 
21 0.170410886 0.084263942 0.170410886 0.084263942 0.000000085 0.170331731 0.084286066 0.221242019 0.170410765 0.084263976 0.000338286 0.000 654.009 
22 0.155517515 0.084590769 0.155517511 0.084590770 0.000012713 0.155435788 0.084614662 0.238933160 0.155517386 0.084590807 0.000377060 0.034 633.675 
23 0.141936719 0.084885824 0.141936717 0.084885825 0.000008331 0.141853027 0.084911469 0.256444744 0.141936583 0.084885866 0.000416488 0.020 615.732 
24 0.129552586 0.085152850 0.129552586 0.085152850 0.000000336 0.129467508 0.085180222 0.273717898 0.129552444 0.085152896 0.000456334 0.001 599.820 
25 0.118259062 0.085395105 0.118259067 0.085395103 0.000019350 0.118173147 0.085424175 0.290703950 0.118258915 0.085395155 0.000496384 0.039 585.644 
26 0.107959286 0.085615427 0.107959282 0.085615429 0.000013357 0.107873045 0.085646164 0.307363367 0.107959135 0.085615481 0.000536447 0.025 572.961 
27 0.098564909 0.085816295 0.098564910 0.085816295 0.000006756 0.098478811 0.085848662 0.323664724 0.098564755 0.085816353 0.000576356 0.012 561.571 
28 0.089995419 0.085999875 0.089995417 0.085999876 0.000006905 0.089909889 0.086033834 0.339583725 0.089995264 0.085999937 0.000615964 0.011 551.304 
29 0.082177493 0.086168063 0.082177490 0.086168064 0.000010506 0.082092910 0.086203573 0.355102286 0.082177337 0.086168128 0.000655146 0.016 542.020 
30 0.075044381 0.086322520 0.075044378 0.086322521 0.000012782 0.074961082 0.086359540 0.370207694 0.075044225 0.086322589 0.000693796 0.018 533.597 

AVERAGE     0.000029764   0.146014603   0.000227849 2406.431 2315.326 
 
 
 



Table 5:  Jump Size Distribution Assumption: Gaussian Mixture 
Parameter Assumptions: a = .1, b = .05, σ = .08, λ = -.5, λJ= 0, α1 = .006, γ1  = .0015, α2 = -.004, γ2  = .001, w = .4, h = 10, r = .05 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
      Alternative Alternative   
 Numerical Numerical Closed-form Closed-form  Closed-form Closed-form   
 Solution Solution Approx. Approx. |(3)-(5)| Approx. Approx. |(3)-(8)|  

Maturity (Prices) (Yields) (Prices) (Yields) (bps) (Prices) (Yields) (bps) (6)/(9) 
1 0.933961543 0.068320016 0.933961609 0.068319946 0.000707134 0.933961606 0.068319949 0.000673842 1.049 
2 0.845975278 0.083632571 0.845975544 0.083632414 0.001574248 0.845975504 0.083632437 0.001337272 1.177 
3 0.748851687 0.096404777 0.748852695 0.096404328 0.004487965 0.748852535 0.096404399 0.003774745 1.189 
4 0.651729871 0.107031278 0.651732328 0.107030335 0.009423686 0.651731934 0.107030487 0.007912785 1.191 
5 0.560330319 0.115845763 0.560334967 0.115844104 0.016591326 0.560334227 0.115844368 0.013948318 1.189 
6 0.477695296 0.123130368 0.477702571 0.123127829 0.025381651 0.477701396 0.123128239 0.021282488 1.193 
7 0.405000382 0.129123896 0.405010730 0.129120245 0.036502031 0.405009071 0.129120831 0.030647478 1.191 
8 0.342245780 0.134028268 0.342259201 0.134023367 0.049016585 0.342257044 0.134024154 0.041140383 1.191 
9 0.288768415 0.138014472 0.288784779 0.138008175 0.062962581 0.288782147 0.138009188 0.052835263 1.192 

10 0.243589169 0.141227221 0.243608181 0.141219416 0.078044571 0.243605119 0.141220673 0.065474340 1.192 
11 0.205629457 0.143789044 0.205650731 0.143779639 0.094048970 0.205647300 0.143781156 0.078880660 1.192 
12 0.173835767 0.145803691 0.173858877 0.145792614 0.110773602 0.173855145 0.145794402 0.092886444 1.193 
13 0.147243537 0.147359027 0.147268069 0.147346212 0.128150375 0.147264107 0.147348281 0.107455075 1.193 
14 0.125003693 0.148529429 0.125029221 0.148514843 0.145855144 0.125025096 0.148517199 0.122290636 1.193 
15 0.106387431 0.149377856 0.106413518 0.149361511 0.163454443 0.106409293 0.149364158 0.136984555 1.193 
16 0.090779370 0.149957702 0.090805733 0.149939554 0.181477199 0.090801463 0.149942493 0.152087392 1.193 
17 0.077665895 0.150314062 0.077692230 0.150294119 0.199429595 0.077687964 0.150297349 0.167123876 1.193 
18 0.066621250 0.150485094 0.066647263 0.150463405 0.216882633 0.066643040 0.150466925 0.181680696 1.194 
19 0.057293948 0.150503173 0.057319483 0.150479720 0.234525264 0.057315338 0.150483527 0.196459896 1.194 
20 0.049394746 0.150395561 0.049419635 0.150370373 0.251875428 0.049415594 0.150374462 0.210990186 1.194 
21 0.042685685 0.150185317 0.042709792 0.150158432 0.268845427 0.042705877 0.150162797 0.225192576 1.194 
22 0.036970986 0.149891902 0.036994204 0.149863365 0.285364882 0.036990431 0.149868002 0.239003595 1.194 
23 0.032089393 0.149531728 0.032111646 0.149501587 0.301409056 0.032108027 0.149506488 0.252403845 1.194 
24 0.027907863 0.149118617 0.027929101 0.149086920 0.316975495 0.027925644 0.149092078 0.265394861 1.194 
25 0.024316387 0.148664192 0.024336583 0.148630984 0.332085291 0.024333293 0.148636392 0.278000569 1.195 
26 0.021223771 0.148178209 0.021242915 0.148143532 0.346768283 0.021239794 0.148149184 0.290252665 1.195 
27 0.018554207 0.147668841 0.018572304 0.147632734 0.361065013 0.018569352 0.147638621 0.302192720 1.195 
28 0.016244451 0.147142996 0.016261554 0.147105414 0.375816420 0.016258770 0.147111530 0.314662018 1.194 
29 0.014241758 0.146606100 0.014257810 0.146567257 0.388434913 0.014255190 0.146573593 0.325072741 1.195 
30 0.012501667 0.146063110 0.012516727 0.146022979 0.401313488 0.012514268 0.146029528 0.335817191 1.195 

AVERAGE     0.179641423   0.150461970 1.188 
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Table 6:  Jump Size Distribution Assumption: Gaussian Mixture 
Parameter Assumptions: a = .1, b = .05, σ = .02, λ = -.5, λJ= 0, α1 = .006, γ1  = .0015, α2 = -.004, γ2  = .001, w = .4, h = 31, r = .05 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
      Alternative Alternative   
 Numerical Numerical Closed-form Closed-form  Closed-form Closed-form   
 Solution Solution Approx. Approx. |(3)-(5)| Approx. Approx. |(3)-(8)|  

Maturity (Prices) (Yields) (Prices) (Yields) (bps) (Prices) (Yields) (bps) (6)/(9) 
1 0.946813334 0.054653318 0.946813434 0.054653212 0.001062380 0.946813425 0.054653223 0.000959176 1.108 
2 0.889263445 0.058680874 0.889264293 0.058680398 0.004767323 0.889264162 0.058680471 0.004032697 1.182 
3 0.829843310 0.062172793 0.829846785 0.062171397 0.013955096 0.829846234 0.062171618 0.011744114 1.188 
4 0.770417818 0.065205572 0.770426852 0.065202641 0.029314439 0.770425409 0.065203109 0.024630644 1.190 
5 0.712324541 0.067844331 0.712342796 0.067839206 0.051254263 0.712339878 0.067840025 0.043060938 1.190 
6 0.656477452 0.070144489 0.656508715 0.070136552 0.079369294 0.656503709 0.070137823 0.066661887 1.191 
7 0.603461496 0.072153292 0.603509244 0.072141989 0.113028317 0.603501577 0.072143804 0.094879204 1.191 
8 0.553613333 0.073911099 0.553680605 0.073895910 0.151883803 0.553669790 0.073898352 0.127467579 1.192 
9 0.507087788 0.075452349 0.507176829 0.075432840 0.195084647 0.507162499 0.075435980 0.163689961 1.192 

10 0.463909922 0.076806488 0.464022085 0.076782313 0.241748614 0.464004004 0.076786210 0.202780896 1.192 
11 0.424014997 0.077998769 0.424150960 0.077969623 0.291460320 0.424129022 0.077974325 0.244438559 1.192 
12 0.387279296 0.079050763 0.387438779 0.079016453 0.343097374 0.387412999 0.079021998 0.287647183 1.193 
13 0.353541648 0.079981076 0.353723987 0.079941413 0.396629142 0.353694487 0.079947828 0.332473711 1.193 
14 0.322620467 0.080805619 0.322824362 0.080760491 0.451283710 0.322791349 0.080767796 0.378233734 1.193 
15 0.294324786 0.081538094 0.294548507 0.081487439 0.506551640 0.294512254 0.081495644 0.424494988 1.193 
16 0.268462306 0.082190298 0.268703815 0.082134098 0.561999583 0.268664648 0.082143209 0.470891184 1.193 
17 0.244844762 0.082772406 0.245101833 0.082710677 0.617286804 0.245060108 0.082720692 0.517139075 1.194 
18 0.223291393 0.083293204 0.223561712 0.083225988 0.672155737 0.223517803 0.083236901 0.563029731 1.194 
19 0.203631088 0.083760280 0.203912300 0.083687646 0.726335107 0.203866587 0.083699447 0.608332466 1.194 
20 0.185703434 0.084180216 0.185993264 0.084102241 0.779749530 0.185946123 0.084114915 0.653005278 1.194 
21 0.169359350 0.084558690 0.169655544 0.084475481 0.832085303 0.169607338 0.084489014 0.696761465 1.194 
22 0.154460905 0.084900648 0.154761348 0.084812320 0.883280139 0.154712422 0.084826692 0.739560151 1.194 
23 0.140881124 0.085210384 0.141183846 0.085117059 0.933246919 0.141134524 0.085132251 0.781330766 1.194 
24 0.128503506 0.085491629 0.128806679 0.085393442 0.981868230 0.128757258 0.085409432 0.821968264 1.195 
25 0.117221388 0.085747637 0.117523356 0.085644728 1.029093854 0.117474106 0.085661494 0.861431216 1.195 
26 0.106937294 0.085981256 0.107236591 0.085873760 1.074961048 0.107187755 0.085891279 0.899762630 1.195 
27 0.097562303 0.086194967 0.097857631 0.086083022 1.119445386 0.097809423 0.086101273 0.936941278 1.195 
28 0.089015373 0.086390936 0.089305584 0.086274688 1.162477288 0.089258192 0.086293646 0.972898642 1.195 
29 0.081222681 0.086571060 0.081506773 0.086450660 1.203997740 0.081460358 0.086470303 1.007575006 1.195 
30 0.074116961 0.086737029 0.074394125 0.086612610 1.244190704 0.074348824 0.086632914 1.041152182 1.195 

AVERAGE     0.556422124   0.465965820 1.190 
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Table 7:  Alternative Distributional Assumptions for Jumps 
Parameter Assumptions: a = .1, b = .05, σ = .08, λ = -.5, λJ= 0, α = 0, γ = .01, h = 10, r = .05 

(1) (2) (3) (4) (5) (6) (7) (8) 
    Restricted    
   Gaussian Gaussian    
 Gaussian Exponential Mixture Mixture |(2)-(3)| |(2)-(4)| |(2)-(5)| 

Maturity (Yields) (Yields) (Yields) (Yields) (bps) (bps) (bps) 
1 0.068204670 0.068204668 0.068204694 0.068204671 0.000021196 0.000242376 0.000009273 
2 0.083203734 0.083203705 0.083203912 0.083203746 0.000288425 0.001783383 0.000126186 
3 0.095506401 0.095506276 0.095506954 0.095506455 0.001245699 0.005526912 0.000544993 
4 0.105542270 0.105541933 0.105543472 0.105542417 0.003369098 0.012016760 0.001473981 
5 0.113673839 0.113673133 0.113675990 0.113674147 0.007060103 0.021513576 0.003088795 
6 0.120207028 0.120205768 0.120210434 0.120207579 0.012603343 0.034064835 0.005513963 
7 0.125400034 0.125398018 0.125404991 0.125400916 0.020160200 0.049564714 0.008820088 
8 0.129470782 0.129467804 0.129477562 0.129472085 0.029780764 0.067803170 0.013029084 
9 0.132603202 0.132599060 0.132612053 0.132605014 0.041423695 0.088504781 0.018122867 

10 0.134952520 0.134947022 0.134963655 0.134954925 0.054978037 0.111358544 0.024052891 
11 0.136649713 0.136642685 0.136663317 0.136652788 0.070283804 0.136040041 0.030749164 
12 0.137805276 0.137796561 0.137821499 0.137809089 0.087149841 0.162227367 0.038128056 
13 0.138512388 0.138501851 0.138531349 0.138516998 0.105368441 0.189612094 0.046098693 
14 0.138849594 0.138837122 0.138871385 0.138855051 0.124726760 0.217906397 0.054567957 
15 0.138883067 0.138868566 0.138907752 0.138889412 0.145015341 0.246847258 0.063444212 
16 0.138668516 0.138651913 0.138696136 0.138675780 0.166034167 0.276198511 0.072639948 
17 0.138252803 0.138234043 0.138283378 0.138261010 0.187596695 0.305751335 0.082073554 
18 0.137675306 0.137654353 0.137708838 0.137684473 0.209532301 0.335323659 0.091670382 
19 0.136969075 0.136945906 0.137005550 0.136979211 0.231687502 0.364758849 0.101363282 
20 0.136161806 0.136136413 0.136201198 0.136172915 0.253926263 0.393923942 0.111092740 
21 0.135276671 0.135249058 0.135318942 0.135288752 0.276129666 0.422707636 0.120806729 
22 0.134333014 0.134303195 0.134378116 0.134346060 0.298195126 0.451018176 0.130460367 
23 0.133346945 0.133314942 0.133394824 0.133360947 0.320035320 0.478781241 0.140015452 
24 0.132331842 0.132297684 0.132382436 0.132346786 0.341576955 0.505937905 0.149439918 
25 0.131298772 0.131262496 0.131352017 0.131314643 0.362759458 0.532442704 0.158707263 
26 0.130256857 0.130218504 0.130312684 0.130273637 0.383533650 0.558261855 0.167795972 
27 0.129213574 0.129173188 0.129271912 0.129231243 0.403860460 0.583371624 0.176688951 
28 0.128175016 0.128132645 0.128235792 0.128193553 0.423709701 0.607756857 0.185372994 
29 0.127146109 0.127101803 0.127209250 0.127165493 0.443058925 0.631409659 0.193838280 
30 0.126130799 0.126084610 0.126196232 0.126151007 0.461892372 0.654328235 0.202077913 

AVERAGE     0.182233444 0.281566146 0.079727132 
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Table 8:  Alternative Distributional Assumptions for Jumps 
Parameter Assumptions: a = .1, b = .05, σ = .08, λ = -.5, λJ= 0, α = 0, γ = .005, h = 50, r = .05 

(1) (2) (3) (4) (5) (6) (7) (8) 
    Restricted    
   Gaussian Gaussian    
 Gaussian Exponential Mixture Mixture |(2)-(3)| |(2)-(4)| |(2)-(5)| 

Maturity (Yields) (Yields) (Yields) (Yields) (bps) (bps) (bps) 
1 0.068165989 0.068165988 0.068166003 0.068165989 0.000006624 0.000142401 0.000006624 
2 0.083059911 0.083059902 0.083060016 0.083059920 0.000090133 0.001056683 0.000090133 
3 0.095205211 0.095205172 0.095205540 0.095205250 0.000389281 0.003298451 0.000389281 
4 0.105043264 0.105043158 0.105043985 0.105043369 0.001052843 0.007216019 0.001052843 
5 0.112946284 0.112946063 0.112947583 0.112946505 0.002206282 0.012987996 0.002206282 
6 0.119228183 0.119227789 0.119230249 0.119228576 0.003938545 0.020661140 0.003938545 
7 0.124153704 0.124153074 0.124156722 0.124154334 0.006300063 0.030184757 0.006300063 
8 0.127946116 0.127945185 0.127950260 0.127947046 0.009306489 0.041440047 0.009306489 
9 0.130793691 0.130792396 0.130799117 0.130794985 0.012944905 0.054264031 0.012944905 

10 0.132855159 0.132853441 0.132862006 0.132856877 0.017180637 0.068468357 0.017180637 
11 0.134264311 0.134262115 0.134272697 0.134266508 0.021963689 0.083853570 0.021963689 
12 0.135133878 0.135131154 0.135143900 0.135136601 0.027234325 0.100219580 0.027234325 
13 0.135558798 0.135555505 0.135570535 0.135562090 0.032927638 0.117373021 0.032927638 
14 0.135618983 0.135615085 0.135632496 0.135622880 0.038977112 0.135132168 0.038977112 
15 0.135381647 0.135377115 0.135396980 0.135386179 0.045317294 0.153329950 0.045317294 
16 0.134903275 0.134898087 0.134920457 0.134908464 0.051885677 0.171815551 0.051885677 
17 0.134231286 0.134225423 0.134250331 0.134237148 0.058623967 0.190454964 0.058623967 
18 0.133405434 0.133398886 0.133426347 0.133411982 0.065478844 0.209130815 0.065478844 
19 0.132459004 0.132451764 0.132481778 0.132466244 0.072402344 0.227741673 0.072402344 
20 0.131419809 0.131411873 0.131444429 0.131427744 0.079351957 0.246201054 0.079351957 
21 0.130311041 0.130302412 0.130337485 0.130319670 0.086290521 0.264436220 0.086290521 
22 0.129151994 0.129142676 0.129180233 0.129161313 0.093185977 0.282386903 0.093185977 
23 0.127958667 0.127948665 0.127988667 0.127968668 0.100011037 0.300004003 0.100011037 
24 0.126744278 0.126733604 0.126776003 0.126754953 0.106742799 0.317248314 0.106742799 
25 0.125519707 0.125508371 0.125553116 0.125531043 0.113362331 0.334089319 0.113362331 
26 0.124293856 0.124281870 0.124328906 0.124305841 0.119854266 0.350504061 0.119854266 
27 0.123073966 0.123061345 0.123110614 0.123086587 0.126206394 0.366476107 0.126206394 
28 0.121865882 0.121852641 0.121904081 0.121879123 0.132409282 0.381994613 0.132409282 
29 0.120674273 0.120660428 0.120713979 0.120688119 0.138455914 0.397053476 0.138455914 
30 0.119502826 0.119488392 0.119543991 0.119517260 0.144341366 0.411650592 0.144341366 

AVERAGE     0.056947951 0.176027195 0.056947951 
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Table 9:  GMM:  Vasicek and Jump-Diffusion Models (J Distribution: Gaussian) 
(Corresponding p values are listed under each parameter estimate.) 
 (1) (2) (3) (4) (5) (6) 
Model: Vasicek Vasicek Vasicek Jumps: Jumps: Jumps: 
    Gaussian Gaussian Gaussian 
Proxy: Fed Funds 1-month bill 3-month bill Fed Funds 1-month bill 3-month bill 
Parameter       
       
a 2.35281 4.14128 2.07811 3.05483 1.98156 2.46512 
 0.00000 0.00000 0.00000 0.00000 0.11304 0.00000 
       
b 0.04786 0.04229 0.04434 0.05037 0.01716 0.04325 
 0.00068 0.00242 0.00156 0.00000 0.49978 0.00000 
       
σ 0.04938 0.05536 0.04088 0.05626 0.03614 0.04453 
 0.47219 0.48025 0.47850 0.47220 0.49990 0.47851 
       
h    48.42087 18.09705 34.83129 
    0.00000 0.00000 0.00000 
       
α    -0.00016 0.00275 0.00008 
    0.44138 0.49967 0.47120 
       
γ    0.00000 0.00112 0.00000 
    0.49943 0.50000 0.49938 
       
Omnibus Test 7.48E-09 7.41E-11 1.64E-10 7.48E-09 3.32E-11 1.64E-10 
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Table 10:  GMM:  Jump-Diffusion Models (J Distributions: Bernoulli Mixture of Gaussian Distributions) 
(Corresponding p values are listed under each parameter estimate.) 
 (1) (2) (3) (4) (5) (6) 
Model: Jumps: Jumps: Jumps: Jumps: Jumps: Jumps: 

 
Gaussian 
Mixture 

Gaussian 
Mixture 

Gaussian 
Mixture 

Gaussian 
Mixture 

(“restricted”) 

Gaussian 
Mixture 

(“restricted”) 

Gaussian 
Mixture 

(“restricted”) 
Proxy: Fed Funds 1-month bill 3-month bill Fed Funds 1-month bill 3-month bill 
Parameter       
       
a 2.25080 3.42960 2.64880 2.71445 2.61863 2.84140 
 0.00000 0.00000 0.28542 0.38115 0.49716 0.00000 
       
b 0.06045 0.04304 0.06600 0.04786 0.04229 0.04434 
 0.48938 0.49828 0.49994 0.00068 0.00242 0.00156 
       
σ 0.00000 0.03122 0.00000 0.00525 0.03632 0.04500 
 0.48475 0.49723 0.49997 0.49999 0.50000 0.41741 
       
h 68.02432 33.76647 76.48174 23.30055 25.57396 26.13419 
 0.00000 0.00000 0.00000 0.00000 0.00006 0.00000 
       
w 0.45357 0.32966 0.44591    
 0.13320 0.20020 0.49828    
       
α1 -0.00628 -0.00814 -0.00725 0.00841 0.00492 0.00316 
 0.49976 0.49991 0.49980 0.50000 0.50000 0.49682 
       
γ1 0.00000 0.00000 0.00000 0.00699 0.00000 0.00000 
 0.49997 0.49997 0.50000 0.50000 0.50000 0.49682 
       
α2 0.00445 0.00389 0.00448    
 0.49979 0.49990 0.49990    
       
γ2 0.00319 0.00462 -0.00001    
 0.49996 0.49996 0.50000    
       
Omnibus Test 6.35E-09 4.06E-11 4.20E-05 7.46E-09 7.50E-11 1.65E-10 
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Table 11:  GMM:  Jump-Diffusion Models (J Distributions: Bernoulli Mixture of Uniform Distributions) 
(Corresponding p values are listed under each parameter estimate.) 
 (1) (2) (3) 
Model: Jumps: Jumps: Jumps: 

 
Uniform 
Mixture 

Uniform 
Mixture 

Uniform 
Mixture 

Proxy: Fed Funds 1-month bill 3-month bill 
    
Parameter    
    
a 0.16053 1.30912 0.32272 
 0.45789 0.32845 0.00860 
    
b 0.05178 0.02492 0.05251 
 0.33120 0.49963 0.47449 
    
σ 0.01896 0.02880 0.00738 
 0.49974 0.49996 0.49964 
    
h 103.50648 41.59538 163.09353 
 0.00000 0.00000 0.00000 
    
w -1.02471 0.54412 0.48470 
 0.00000 0.34951 0.10191 
    
ω1 -0.00308 -0.00106 -0.00245 
 0.49989 0.49999 0.49998 
    
ν1 0.00033 -0.00069 0.00054 
 0.49999 0.50000 0.50000 
    
ω2 -0.00036 0.00428 0.00150 
 0.49996 0.49999 0.49999 
    
ν2 -0.00104 0.00021 0.00022 
 0.49997 0.50000 0.50000 
    
Omnibus Test 1.29E-10 3.32E-11 5.16E-11 
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Table 12:  MLE:  Vasicek Model 
(Corresponding p values are listed under each parameter estimate.) 
 (1) (2) (3) (4) (5) (6) 
Proxy: Fed Funds 1-month bill 3-month bill Fed Funds 1-month bill 3-month bill 
Frequency: Daily Daily Daily Weekly Weekly Weekly 
Parameter       
       
a 1.56994 0.49782 0.08045 1.03269 0.45170 0.07396 
 0.00103 0.04946 0.20959 0.00236 0.05360 0.21317 
       
b 0.04640 0.04133 0.02791 0.04622 0.04066 0.02747 
 0.00000 0.00044 0.23425 0.00000 0.00058 0.24934 
       
σ 0.03996 0.01932 -0.00750 0.03278 0.01821 -0.00722 
 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
       
Log-Likelihood 20506 23562 27810 3685 4229 5087 
Observations 4476 4439 4447 927 927 927 
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Table 13:  MLE:  Jump-Diffusion Model (J Distribution: Gaussian) 
(Corresponding p values are listed under each parameter estimate.) 
 (1) (2) (3) (4) (5) (6) 
Proxy: Fed Funds 1-month bill 3-month bill Fed Funds 1-month bill 3-month bill 
Frequency: Daily Daily Daily Weekly Weekly Weekly 
Parameter       
       
a 1.61898 1.61286 1.61286 2.78885 0.59672 1.61286 
 0.00000 0.00000 0.00000 0.00000 0.00002 0.00000 
       
b 0.04293 0.02152 0.02152 0.02245 0.02615 0.02152 
 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 
       
σ 0.01448 -0.00778 -0.00778 0.01150 0.00687 -0.00778 
 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
       
q 0.16366 0.14543 0.14543 0.35115 0.31967 0.14543 
 0.00000 0.00000 0.00000 0.00000 0.00000 0.00021 
       
α -0.00024 -0.00025 -0.00025 -0.00007 0.00053 -0.00025 
 0.15669 0.25035 0.42941 0.41774 0.02369 0.44749 
       
γ 0.00585 0.00500 0.00500 0.00616 0.00411 0.00500 
 0.00000 0.00000 0.00000 0.00000 0.00000 0.02732 
       
Log-Likelihood 22460 24967 27400 3766 4448 4787 
Observations 4476 4439 4447 927 927 927 
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Table 14:  MLE:  Jump-Diffusion Model (J Distributions: Bernoulli Mixture of Gaussian Distributions) 
(Corresponding p values are listed under each parameter estimate.) 
 (1) (2) (3) (4) (5) (6) 
Proxy: Fed Funds 1-month bill 3-month bill Fed Funds 1-month bill 3-month bill 
Frequency: Daily Daily Daily Weekly Weekly Weekly 
Parameter       
       
a 0.71688 2.12454 2.61228 1.24005 1.44447 1.29228 
 0.00665 0.00000 0.00000 0.00002 0.00000 0.00000 
       
b 0.05572 0.04523 0.03313 0.03427 0.03919 0.04198 
 0.00028 0.00000 0.00000 0.00015 0.03016 0.02341 
       
σ 0.02267 0.01322 0.00896 0.02191 0.01561 0.00581 
 0.00000 0.00000 0.00000 0.00000 0.00000 0.09275 
       
q 0.13740 0.13162 0.17538 0.11132 0.09746 0.53182 
 0.00000 0.00000 0.00000 0.00009 0.42527 0.39862 
       
w 0.45304 0.50015 0.46923 0.11618 0.47624 0.39409 
 0.00000 0.00000 0.03728 0.00822 0.42105 0.41600 
       
α1 -0.00661 -0.00674 -0.00787 -0.01759 -0.00618 -0.00243 
 0.00000 0.00000 0.00000 0.00000 0.00003 0.01589 
       
γ1 0.00071 0.00030 0.00031 0.00076 0.00045 -0.00005 
 0.00000 0.00000 0.04676 0.25163 0.40938 0.49737 
       
α2 0.00256 0.00263 0.00368 0.00778 0.00195 0.00037 
 0.00000 0.00000 0.00000 0.00000 0.40011 0.46941 
       
γ2 0.00061 0.00096 0.00084 0.00202 0.00073 0.00074 
 0.00000 0.00000 0.00486 0.00000 0.40713 0.32206 
       
Log-Likelihood 20639 24250 26676 3791 4255 4912 
Observations 4476 4439 4447 927 927 927 
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Table 15:  MLE:  Jump-Diffusion Model (J Distributions: “Restricted” Bernoulli Mixture of Gaussian Distributions) 
(Corresponding p values are listed under each parameter estimate.) 
 (1) (2) (3) (4) (5) (6) 
Proxy: Fed Funds 1-month bill 3-month bill Fed Funds 1-month bill 3-month bill 
Frequency: Daily Daily Daily Weekly Weekly Weekly 
Parameter       
       
a 1.14986 0.85354 1.61286 -0.03390 0.05091 0.00972 
 0.00001 0.00035 0.00000 0.17805 0.00013 0.08271 
       
b 0.02886 0.01605 0.02152 0.04368 0.02851 0.04832 
 0.00013 0.07460 0.00000 0.08148 0.00001 0.00017 
       
σ 0.02267 -0.01356 -0.00778 0.01000 -0.00218 0.00123 
 0.00000 0.00000 0.00000 0.41459 0.00000 0.00000 
       
q 0.00610 0.14983 0.14543 0.20648 0.30919 0.35224 
 0.00000 0.00000 0.00000 0.49842 0.00000 0.00000 
       
α1 0.00675 0.00376 0.00373 0.00278 0.00000 0.00000 
 0.00000 0.00000 0.00000 0.49559 0.00000 0.00000 
       
γ1 0.00061 0.00069 0.00050 0.00025 0.00419 0.00141 
 0.00000 0.00000 0.00000 0.49984 0.00000 0.00000 
       
Log-Likelihood 21147 24347 27165 3678 4446 5161 
Observations 4476 4439 4447 927 927 927 
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Table 16:  MLE with a Latent Factor:  Vasicek and Jump-Diffusion Models 
(Corresponding p values are listed under each parameter estimate.) 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Model: Vasicek Jumps: Gaussian Jumps: Gaussian Mix Jumps: “Restricted” Gaussian Mix  
Frequency: Daily Weekly Daily Weekly Daily Weekly Daily Weekly 
Parameter         
a 0.13326 0.13113 0.04843 0.70665 0.03321 0.14996 0.05096 1.01994 
 0.09762 0.08871 0.66906 0.00000 0.06066 0.10382 0.00864 0.00000 
         
b 0.04029 0.04064 -0.04825 0.05073 -0.21523 -0.01965 -0.00725 0.04337 
 0.01467 0.01375 0.83333 0.06922 0.00001 0.73318 0.81190 0.00000 
         
σ 0.01078 0.01061 0.00642 0.03466 0.00552 0.00973 0.00650 0.04343 
 0.00004 0.00002 0.00101 0.00018 0.00000 0.00002 0.00000 0.44210 
         
q   0.19702 0.01566 0.38951 0.11722 0.19206 0.05534 
   0.00000 0.49422 0.00224 0.27781 0.00000 0.49956 
         
w     0.12042 0.13520   
     0.15256 0.59420   
         
α (α1)   0.00006 -0.00011 -0.00004 -0.00211 0.00001 0.00533 
   0.21424 0.49845 0.77376 0.57045 0.99307 0.49885 
         
γ (γ1)   0.00081 0.00407 0.00111 0.00211 0.00083 0.00056 
   0.00124 0.47538 0.00000 0.15491 0.00000 0.49991 
         
α2     0.00008 0.00210   
     0.04618 0.00155   
         
γ2     0.00051 0.00000   
     0.00000 1.00000   
         
Log-likelihood 27630 5049 27825 5022 27832 5056 27824 4998 
Observations 4427 927 4427 927 4427 927 4427 927 
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Table 17:  MLE with a Latent Factor:  Vasicek and Jump-Diffusion Models, Risk-Neutral Measure 
(Corresponding p values are listed under each parameter estimate.) 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Model: Vasicek Jumps: Gaussian Jumps: Gaussian Mix Jumps: “Restricted” Gaussian Mix  
Frequency: Daily Weekly Daily Weekly Daily Weekly Daily Weekly 
Parameter         
a 0.13325 0.13113 0.04834 1.23028 0.03213 0.12780 0.05085 0.11928 
 0.09763 0.08871 0.63637 0.00000 0.55803 0.00000 0.00000 0.25102 
         
b 0.03351 0.02519 0.02465 0.04596 -0.02286 -1.08976 0.03813 -0.14270 
 0.05415 0.14907 0.00089 0.00000 0.09763 0.08047 0.00000 0.68863 
         
σ 0.01078 0.01061 0.00642 0.05314 0.00550 0.00924 0.00649 0.00931 
 0.00004 0.00002 0.00027 0.00000 0.00000 0.00000 0.00000 0.00018 
         
λ -0.08387 -0.19089 0.55087 -0.43453 0.38984 0.11584 0.35639 -2.31667 
 0.00000 0.00000 0.30668 0.00000 0.00418 0.11825 0.12983 0.64559 
         
q   0.19699 216.41147 1.17478 -14.68129 0.19207 0.14069 
   0.00000 0.00000 0.28119 0.07164 0.00000 0.57686 
         
w     0.12061 0.12649   
     0.17010 0.58710   
         
α (α1)   0.00006 0.00188 -0.00004 -0.00212 -0.00001 0.00005 
   0.18189 0.00000 0.77266 0.50997 0.99799 0.98510 
         
γ (γ1)   0.00081 0.07059 0.00110 0.00199 0.00083 -0.00163 
   0.00032 0.00000 0.00004 0.02342 0.00000 0.05164 
         
α2     0.00008 0.00198   
     0.02391 0.00000   
         
γ2     0.00051 -0.00001   
     0.00005 0.99097   
         
Log-likelihood 27630 5049 27825 8190 27832 5056 27824 5054 
Observations 4427 927 4427 927 4427 927 4427 927 

 



 57
Table 18:  MLE for Two-factor Model   
(Corresponding p values are listed under each parameter estimate.) 

 (1) (2) (3) (4) 
Stages: One One Three Three 

Frequency: Daily Weekly Daily Weekly 
Parameter     

a 1.49294 1.52500 0.08724 0.08882 
 0.00000 0.00000 0.25190 0.31094 
     

σ 0.06423 0.05000 0.00741 0.00753 
 0.00000 0.00000 0.00000 0.00000 
     

λr -2.05534 -0.05598 -3.62E-19 -2.03E-09 
 0.00000 0.98644 1.00000 1.00000 
     

q 0.00001 0.25002 0.01690 0.01022 
 0.00000 0.80645 0.00002 0.27289 
     

α1 0.13267 0.00500 0.00157 0.00259 
 0.00000 0.41533 0.00000 0.32128 
     

γ1 0.56456 0.00050 0.00076 0.00222 
 0.00000 0.98144 0.00001 0.06199 
     

κ 1.13004 1.26250 1.64655 1.26287 
 0.00000 0.00000 0.00000 0.00000 
     

β 0.07594 0.05153 0.02126 0.04495 
 0.00000 0.63033 0.00000 0.00000 
     

φ 0.00722 0.00500 0.00666 0.00500 
 0.00000 0.00000 0.00000 0.00000 
     

λb -12.25844 -0.25500 0.00000 -0.24235 
 0.00000 0.93069 1.00000 0.00000 
     
     

Log-likelihood 2291825 102121   
Observations 4427 927 4427 927 
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